
Assignment 1
CS 4400 / CS 5400 Programming Languages

Due: Friday, September 27, by midnight.

Submission:

1. Submit one file named Assignment1.hs via Blackboard.

2. At the very top, the file should contain a preamble following this template.

{- |

Module : Assignment1

Description : Assignment 1 submission for <CS 4400 / CS 5400 (choose one)>.

Copyright : (c) <your name>

Maintainer : <your email>

-}

module Assignment1 where

-- your code goes here

The rest of the file will contain your solutions to the exercises below.

3. Each top-level function must include a type signature, followed by one or more defining
equations.

4. Make sure your file loads into GHCi or can be compiled by GHC without any errors.

Purpose: The purpose of this assignment is to get a bit of practice with Haskell, especially with
processing lists and trees. Most of the concepts involved in the exercises here should be familiar
to you from prerequisite courses or other parts of the curriculum. However, the Haskell specifics
might be new, in particular working with types, polymorphism, typeclasses, and some of the syntax.
If something is not clear, you are encouraged:

a) to look at online resources – see the course page for online material; and
b) to ask questions after class, during office hours, or on Piazza.

1

https://blackboard.northeastern.edu/

We also recommend familiarizing yourself with Hoogle – a very handy search engine for Haskell’s
libraries. It allows searching by name or by type.

Grade: To calculate your grade, we will take the following into account:

a) Does your code compile without errors?
b) Does it follow the above rules?
c) Are functions and constants named as specified? Do they have the correct types?
d) Does your code behave as specified? This will be determined by unit testing.
e) How readable is your code?

Readability will initially play a small role, but will become more important with each further
assignment.

Exercises

Recursive Functions

Task 1: Give a definition of Fibonacci as a recursive function named fibonacci with the following
type signature:

fibonacci : Integer -> Integer

Tip: Use the factorial example from lecture 1 (in Lec01.hs) as guidance, but pay attention to how
many base cases you need for fibonacci.

Lists and Polymorphism

Haskell lists are defined using the empty list constructor [] and the infix cons constructor _ : _.
Moreover, list values can be constructed by listing values between [and], separated by a comma ,.
The following are all list values:

[] -- empty list

[1, 2, 3] -- list containing the numbers 1, 2 and 3

1 : [2, 3] -- the same list as above

1 : 2 : 3 : [] -- the same as above

Functions over lists can pattern-match on these two constructors. For example, here is how we
define the length of a list:

2

https://hoogle.haskell.org
https://en.wikipedia.org/wiki/Fibonacci_number

length :: [a] -> Integer

length [] = 0

length (x : xs) = 1 + length xs

This is a polymorphic function: it works on lists with elements of any type, as it does not depend on
any specific operations on the element type. This is captured in its type by using the type variable a

instead of a particular type.

Note on function types in Haskell In Haskell, function types have the general form:

f :: ArgumentType1 -> ArgumentType2 -> ... -> ArgumentTypeN -> ReturnType

The last arrow separates argument types from the return type. This means that a unary function
which takes an integer and returns a boolean has the type Integer -> Bool; a function which takes
an integer and a string, returning a boolean Integer -> String -> Bool; a function which takes
three intgers and returns a boolean Integer -> Integer -> Integer -> Bool; and so on. We will
talk about the reasons for this notation later on, but, for now, think of the type signature

g :: Integer -> Integer -> Integer -> Bool

as saying

The function g takes an Integer then it takes another Integer then it takes another
Integer and, finally, returns a Bool.

Task 2: Checking if a list contains the given value.

Give a recursive definition for the function:

isIntegerElem :: Integer -> [Integer] -> Bool

(That is, a function isIntegerElem which takes an Integer and a list of Integers and returns a
Bool.)

This function should go through the list and return True if it finds the given element or False if the
list contains no such element. Here are some test cases:

3

isIntegerElem 0 [] == False

isIntegerElem 0 [0] == True

isIntegerElem 1 [3, 2, 4, 1, 4, 1] == True

isIntegerElem 1 [3, 4, 2, 0] == False

If you have written your function well, you might notice that it should work for any type that
supports equality, not just integers. This means that its type is not as general as possible and
we might want to generalize it. Haskell provides typeclasses as a mechanism to support ad hoc
polymorphism. For example, the Eq typeclass requires the == (“equal to”) and /= (“not equal to”)
operations. To use equality in our function, we need to add a typeclass constraint to the type of the
function. For example, if I wish to write a function foo :: a -> Bool and I want it to work for any
type a with equality, I say so in the type:

foo :: Eq a => a -> Bool

foo x = ... (x == ... -- foo can use equality on values of type a

Task 3: Generalizing the type of isIntegerElem.

Adapt isIntegerElem into a function isElem that works for any type with equality (not just integers)
by adding a typeclass constraint to its type. Give the function’s type signature and adapt the
definition you gave for isIntegerElem as appropriate.

Example test cases:

isElem "x" ["x"] == True

isElem "x" ["xyz"] == False

isElem True [False] == False

isElem 30 [10, 20, 30, 40, 50] == True

Task 4: Write a function count which counts occurrences of an element in a list. Its type should be
as general as possible and it should return an Integer. As a hint, here is a type signature template:

count :: {- constraint -} => {- element type -} -> {- list type -} -> Integer

You will need to replace the comments with the appropriate types / type constraints.

Example test cases:

count 10 [] == 0

count 10 [10] == 1

count 1 [0, 1, 1, 42, 1] == 3

count "x" ["xyz", "zyx", "xxx"] == 0

count "x" ["x", "xxx", "x"] == 2

4

https://en.wikipedia.org/wiki/Type_class

Binary Trees

In Haskell, we can specify a (polymorphic) binary tree as the following datatype:

data Tree a = Node (Tree a) a (Tree a)

| Empty

deriving (Show, Eq)

Here, the constructor Node takes 3 arguments: the left subtree, an element of type a and the right
subtree. The constructor Empty represents an empty tree. For example, the tree

3

/ \

5 6

\

8

is represented as

Node (Node Empty 5 Empty)

3

(Node Empty 6 (Node Empty 8 Empty))

Task 5: Copy the above definition of Tree into your submission file. Transcribe the following tree
into Haskell:

18

/ \

/ \

/ \

15 20

/ \ /

40 50 8

/ \ \

30 50 13

Use the following template to include the tree in your submission file:

tree1 :: Tree Integer

tree1 = {- insert your answer here -}

5

Task 6: Write a function inOrder, which performs an in-order traversal of the tree and returns all
the elements as a list. The function should have the following type:

inOrder :: Tree a -> [a]

Example test cases:

inOrder Empty == []

inOrder (Node Empty 4 Empty) == [4]

inOrder (Node (Node (Node Empty 1 Empty) 2 Empty) 3 (Node Empty 4 (Node Empty 5 Empty)))

== [1, 2, 3, 4, 5]

inOrder tree1 == [30, 40, 50, 15, 50, 18, 8, 13, 20]

Hint: You might want to refresh your memory on the ++ operator.

6

https://www.tutorialspoint.com/data_structures_algorithms/tree_traversal.htm

	Exercises
	Recursive Functions
	Lists and Polymorphism
	Binary Trees

