
Assignment 2
CS 4400 / CS 5400 Programming Languages

General

Due: Thursday, October 17, 11:59pm.

Instructions:

1. Download the assignment pack from https://vesely.io/teaching/CS4400f19/m/cw/
02/Assignment2.zip.

2. You can choose to complete this assignment as a pair. If you work as a pair, submit
as a pair. Completing an assignment with a partner but submitting individually is
considered cheating.

3. Submit via the Khoury Handin server: https://handins.ccs.neu.edu/ (the course is not
yet set up on the server, so please wait before checking)

4. Complete the information in Assignment2.hs and submit modified Haskell files:
Env.hs, ABL.hs, StrictEnvABL.hs, and Assignment2.hs.

5. You are free to add top-level definitions, but add them to the bottom of each file,
below the separator line.

6. Each top-level function must include a type signature, followed by one or more
defining equations.

7. Make sure your file loads into GHCi or can be compiled by GHC without any errors.

8. A complete solution will contain no undefineds and will implement all cases from
ABLExpr.

9. Use the provided SimpleTests module to write your own tests in the tests function.
Follow the examples provided in Env, ABL, and StrictEnvABL.

Grade: To calculate your grade, we will take the following into account:

a) Quality of submission: Does your code compile without errors? Did you follow the
above steps?

b) Correctness: How well does it implement the specification?
c) QA: How well did you test your code?
d) Is your code readable?

1

https://vesely.io/teaching/CS4400f19/m/cw/02/Assignment2.zip
https://vesely.io/teaching/CS4400f19/m/cw/02/Assignment2.zip
https://handins.ccs.neu.edu/

Partial Functions in Haskell

This assignment is mainly made up of partial functions. A partial function (that is, a function
which is not defined for all possible inputs) can be represented using the option type Maybe.
The type is predefined by Haskell as follows:

data Maybe a = Nothing

| Just a

For example, the integer division operation in Haskell, div throws an exception if the second
argument is 0. We can convert it into a partial function as follows:

maybeDiv :: Integer -> Integer -> Maybe Integer

maybeDiv _ 0 = Nothing

maybeDiv n d = Just (n `div` d) -- n `div` d is a fancy way of writing div n d

Now maybeDiv 5 0 will return Nothing, whereas maybeDiv 5 2 will return Just 2.

To use (and compose) partial operations, we can use the case construct:

divideThenAdd2 :: Integer -> Integer -> Maybe Integer

divideThenAdd2 x y =

case maybeDiv x y of

Just z -> Just (r + 2)

Nothing -> Nothing

Environments as Association Lists

Exercise 1 Complete Env.hs by implementing environments as association lists. An asso-
ciation list is a list of pairs – the first member is a variable, the second is the value. For
example, [("x", 1), ("y", 2)] binds "x" to 1 and "y" to 2. The most recent binding
overrides any previous ones, that is, the environment [("x", 100), ("x", 1)] binds "x"
to the value 100, NOT 1. Provide implementation for:

• empty – the empty environment
• add – add a binding for the given variable. That is add "x" 10 env binds "x" to the

value 10 in the environment env
• get – find the binding for the given variable. This is a partial function:

get "x" [("x", 10)] should return Just 10, while get "y" [("x", 10)] should
return Nothing

The following laws, expressed in Haskell, should hold for the above functions. In other
words, these Haskell expressions should always return True for any x, y, v, and env. Assume
x /= y.

2

get x empty == Nothing

get x (add x v env) == Just v

get x (add y v env) == get x env

The ABL language

Syntax

The ABL language has the following syntax:

<ABLValue> ::= <Integer> // tag: Num

| <Bool> // tag: Bool

<ABLExpr> ::= <Variable> // tag: Var

| <ABLValue> // tag: Val

| (+ <ABLExpr> <ABLExpr>) // tag: Add

| (- <ABLExpr> <ABLExpr>) // tag: Sub

| (* <ABLExpr> <ABLExpr>) // tag: Mul

| (/ <ABLExpr> <ABLExpr>) // tag: Div

| (= <ABLExpr> <ABLExpr>) // tag: Eq

| (&& <ABLExpr> <ABLExpr>) // tag: And

| (|| <ABLExpr> <ABLExpr>) // tag: Or

| (not <ABLExpr>) // tag: Not

| (let1 (<Variable> <ABLExpr>) <ABLExpr>) // tag: Let1

| (if-else <ABLExpr> <ABLExpr> <ABLExpr>) // tag: If

Exercise 2 The file ABL.hs contains the initial definitions for the ABLValue and ABLExpr

data types. Following the examples in ABL.hs, add the remaining constructor definitions for
ABLExpr, using tags from the BNF definition above as constructor names.

Exercise 3 In ABL.hs, complete the definition for showABL, which pretty-prints ABL into a
string as s-expressions, based on the above BNF rules. Add new cases for each new construct
you add to the language in exercises 7 and 8.

3

Semantics

Behavior of ABL’s constructs is described below. Current environment for a construct refers
to the set of bindings visible when starting the evaluation of the construct. In other words,
it is the unmodified environment passed to the evaluator as an argument together with the
expression.

Variables

<Variable>

A variable reference should evaluate to the value bound to it in the current environment. If
the variable is not in scope, the evaluation should result in Nothing.

Values

<ABLValue>

A value should trivially evaluate to itself.

Arithmetic Operations

(+ <ABLExpr> <ABLExpr>)

(- <ABLExpr> <ABLExpr>)

(* <ABLExpr> <ABLExpr>)

(/ <ABLExpr> <ABLExpr>)

The operands should be evaluated left to right. Then the corresponding operation should be
applied to the values. If any of the operands do not evaluate to integer values, the evaluator
should return Nothing. If the right operand of division (/) evaluates to 0, the evaluator
should return Nothing.

Equality

(= <ABLExpr> <ABLExpr>)

Operands should be evaluated left to right. Then the values should be compared for equality.
If the values are of a different type, the evaluator is to return Nothing.

4

Boolean Operations

(and <ABLExpr> <ABLExpr>)

(or <ABLExpr> <ABLExpr>)

(not <ABLExpr>)

The operands should be evaluated left to right. Then the corresponding operation should be
applied. If any of the operands do not evaluate to boolean values, the evaluator shall return
Nothing.

Single Let Bindings

(let1 (<Variable> <ABLExpr>) <ABLExpr>)

An expression (let1 (x e1) e2) should be evaluated as follows. First evaluate the left
expression e1 with the current set of bindings. Then the right expression e2 should be
evaluated with the same set of bindings, except x is bound to the value corresponding to
e1. If e1 fails to evaluate, then the evaluation of the whole expression result should return
Nothing.

Conditional

(if-else <ABLExpr> <ABLExpr> <ABLExpr>)

A conditional expression (if-else e1 e2 e3) should be evaluate by first evaluating e1 to
a boolean value. If the result is true, then the value resulting from evaluating e2 shall be
returned. If the result is false, then the result of evaluating e3 should be returned. If e1 does
not evaluate to a boolean, evaluation should return Nothing.

Complete the definitions in StrictEnvABL.hs.

Exercise 4 Checking the type of values before applying each operation is repetitive and
tiresome. It is therefore useful to abstract this process into two higher-order functions:
applyIntegerBinOp for applying integer operations, and applyBoolBinOp for applying
boolean operation. Then, for example, to perform addition on two ABLValues, we can
simply call applyBinIntegerOp (+) v1 v2. We have implemented the former for you. Your
task is to complete applyBoolBinOp, following the example in the file.

5

Exercise 5 Complete the evaluator for ABL, evalABL, implementing the behavior of ABL
constructs as described above. Use applyIntegerBinOp and applyBoolBinOp where appro-
priate. Note: For integer division, use the function div.

Exercise 6 Complete the function scopeCheck which checks if all variables in an ABL
expression are defined before they are used. Trivial examples: for (let (y 10) (+ y y))

the function should return True, while for (let (y 10) (+ y x)) it should return False.

Extensions to ABL

For each extension, update the syntax in ABL.hs, as well as the relevant functions in ABL.hs

and StringEnvABL.hs.

Exercise 7 Implement a new construct which “forgets” the current environment and eval-
uates its argument as if it was a top-level expression (that is, in an empty environment).

The syntax is as follows:

...

| (fresh-env <ABLExpr>) // tag: Fresh

Extend scopeCheck to handle this new construct.

Exercise 8 Implement an improved, generalized let-binding construct, named let*:

...

| (let* ((<Variable> <ABLExpr>) ...) <ABLExpr>) // tag: LetStar

where (<Variable> <ABLExpr>) ... is a, possibly empty, list of bindings. The correspond-
ing Haskell constructor has the following shape:

| LetStar [(Variable, ABLExpr)] ABLExpr

The evaluation of (let* ((x1 e1) (x2 e2) ... (xn en)) e) is equivalent to (let1 (x1

e1) (let1 (x2 e2) ... (let1 (xn en) e))). If the list of bindings is empty, as in (let1

() e), then the evaluation is equivalent to e. For evaluating let* implement the auxil-
iary function unfoldLetStar which, given a list of bindings, outputs the corresponding
expression formed of nested let1 expressions. For example:

unfoldLetStar [] e == e

unfoldLetStar [(x1, e1), (x2, e2)] e == Let1 x1 e1 (Let1 x2 e2 e)

Implement the evaluation of let* with the help of unfoldLetStar.

Extend scopeCheck to handle this construct.

6

	General
	Partial Functions in Haskell
	Environments as Association Lists
	The ABL language
	Syntax
	Semantics
	Variables
	Values
	Arithmetic Operations
	Equality
	Boolean Operations
	Single Let Bindings
	Conditional
	Extensions to ABL

