Assignment 3
CS 4400 / CS 5400 Programming Languages

General

Due: Friday, November 1, 11:59pm.

Instructions:

1.
2.

Submissions are handled via the Khoury Handin server: https://handins.ccs.neu.edu/

Download the assignment pack from https://vesely.io/teaching/CS4400f19/m/cw/
03/Assignment3.zip.

. You can choose to complete this assignment as a pair. If you work as a pair, submit

as a pair. Completing an assignment with a partner but submitting individually is
considered cheating.

Complete the information in Assignment3.hs and submit all . hs files included in the
original pack. You should only need to modify Church.hs and ABLF.hs.

. You are free to add top-level definitions, but add them to the bottom of each file,

below the separator line.

Each top-level function must include a type signature, followed by one or more
defining equations.

Make sure your file loads into GHCi or can be compiled by GHC without any errors.

Use the provided SimpleTests module to write your own tests in the tests function.
Some exercises state properties that your implementation should satisfy. You can
either write test cases for these manually, or you can use Haskell’s QuickCheck library
for property-based testing. I will give an overview of QuickCheck in an upcoming
lecture.

Grade: To calculate your grade, we will take the following into account:

a) Quality of submission: Does your code compile without errors? Did you follow the

above steps?

b) Correctness: How well does it implement the specification?
¢) QA: How well did you test your code?
d) Is your code readable?


https://handins.ccs.neu.edu/
https://vesely.io/teaching/CS4400f19/m/cw/03/Assignment3.zip
https://vesely.io/teaching/CS4400f19/m/cw/03/Assignment3.zip
https://www.schoolofhaskell.com/user/pbv/an-introduction-to-quickcheck-testing

Pure Lambda Calculus as a Core Language

As explained in the lecture, pure lambda calculus can is Turing complete and can thus
be used to implement features of much richer languages. This assignment explores this
concept. In the first few exercises, you will be expected to implement Church encodings
for booleans and natural numbers, together with a fixpoint combinator. This will provide
scaffolding for translating a more complex language into pure lambda calculus, which is
explored in Exercise 7. The relevant lecture notes are here.

The assignment pack contains the following:

* Assignment3.hs, containing meta information and a main function for running all
tests. This file can be compiled to produce an executable Assignment3 which will run
all tests defined in the Church and ABLF modules.

* Lambda.hs, the syntax for Lambda, together with a pretty-printing function showLambda
(for easier debugging).

* Reduce.hs, a module implementing normal-order reduction and normalization. I
recommend taking a look here, although you do not have to do anything in this
file. It provides stepping functions that may be helpful when debugging solutions
(stepNormal and step).

* Church.hs, a module where you will complete definitions for Church encodings-
related functions and for the fixpoint combinator.

* ABLF.hs, which contains the abstract syntax for ABLF and the skeleton for a translation
function from ABLF to Lambda.

* SimpleTests.hs —same as in Assignment 2

Church encodings

Exercise 1 Implement a function converting Haskell booleans to Church-encoded booleans
and its reverse, a function for converting a Church boolean (in normal form) into its Haskell
counterpart:

toChurchBool :: Bool -> Lambda
fromChurchBool :: Lambda -> Maybe Bool

The function fromChurchBool should assume that the Lambda term is normalized, that is,
the term will be in the canonical form presented in the lecture (or the notes) for true or
false. However, due to alpha-equivalence, do not assume anything about the names of
bound variables. For any Lambda term that is not a canonical Church boolean, the function
should return Nothing.

The two conversion functions should satisfy the following property, for all b

fromChurchBool (toChurchBool b) == Just b


https://vesely.io/teaching/CS4400f19/m/notes/notes.html#programming-in-pure-lambda-calculus

Exercise 2 Implement a function converting an integer > 0 to a Church numeral and its
reverse, a conversion from a Church numeral to an integer.

toNumeral :: Integer -> Lambda
fromNumeral :: Lambda -> Maybe Integer

The function fromNumeral should assume that the Lambda term is normalized, that is, the
Church numeral will be in the canonical form presented in the lecture (or the notes).
However, do not assume anything about the names of bound variables. For any Lambda term
that is not a canonical Church numeral, the function should return Nothing.

These operations should satisfy the following, for all i > 0:

fromNumeral (toNumeral i) == Just i

Exercise 3 Complete the following with the Lamabda-terms implementing operations
on Church-encodings of naturals and booleans. The terms for successor (csucc) and
predecessor (cpred) are predefined for you.

-- operations on numerals

cplus :: Lambda -- addition
cminus :: Lambda -- subtraction
ctimes :: Lambda -- multiplication

-- operations on Church booleans

cand :: Lambda
cor :: Lambda
cnot :: Lambda

-- operations on numerals returning Church booleans

ciszero :: Lambda -- is numeral equal to zero?
cleq :: Lambda -- less or equal
ceq :: Lambda -- equal

-- conditional expression
cifthen :: Lambda

Exercise 4 Reduce.hs contains an implementation of normal reduction and provides the
function

normalize :: Lambda -> Lambda -- fully normalize a term

Use normalize to test operations from Exercises 3 by comparing them to their Haskell
counterparts. For example, plus should satisfy the following:



fromNumeral (normalize (App (App cplus (toNumeral n)) (toNumeral m)))
== Just (n + m)

You can either write unit tests manually, using the test function from SimpleTests, or you
can use QuickCheck to state properties and have them verified. I will give an overview of
QuickCheck in the next lecture.

Exercise 5 Write the term fix, expressing the Y combinator.

fix :: Lambda

Translating into Pure Lambda Calculus

ABLF.hs contains the abstract syntax definition for a language with booleans, arithmetic
expressions, let bindings and recursive definitions of functions with multiple arguments. You
will be asked to translate this language into pure lambda calculus. The following sections
five a brief overview of the intended semantics of this language. Note, that you are not
expected to implement an evaluator for this language, just its translation to pure lambda
calculus.

Arithmetic Operations

First few constructs are addition, subtraction, and multiplication on natural numbers. It
is assumed that the constructor Num will only ever be applied to positive integers or zero.
Subtraction is assumed to be a total operation: Sub (Num 0) (Num m) should evaluate to
Num @ for any m.

data ABLFExpr = AVar Variable

| Num Integer

| Add ABLFExpr ABLFExpr
| Sub ABLFExpr ABLFExpr
I

Mul ABLFExpr ABLFExpr

Boolean Operations

Constructs for boolean operations behave as usual. And should evaluate to true only if both
its arguments evaluate to true, otherwise it evaluates to false. Or should evaluate to true
if and only if at least one of its arguments evaluates to true. Not evaluates to false if its
argument evaluates to true and vice-versa.



| Bool Boolean

| And ABLFExpr ABLFExpr
| Or ABLFExpr ABLFExpr
| Not ABLFExpr

Comparison of Natural Numbers

Leq el e2 should evaluate to true if el evaluates to a natural number that is less or equal
to the natural number resulting from evaluating e2. It evaluates to false otherwise. Eq el
e2 evaluates to true if el and e2 evaluate to the same natural number.

| Leq ABLFExpr ABLFExpr
| Eq ABLFExpr ABLFExpr

Conditional Expression

The expression IfThen el e2 e3 evaluates e2 if el evaluates to true, otherwise it evaluates
e3.

| IfThen ABLFExpr ABLFExpr ABLFExpr

Let Bindings

Let x el e2 then evaluates e2 with the variable x replaced by el.

| Let Variable ABLFExpr ABLFExpr

Function Definitions

ABLF allows defining recursive functions, with the given formal arguments, which can be
called from within their own body. LetFun "f" ["x", "y", "z"] el e2 corresponds to

let f xy z =¢el
in e2

in Haskell, or

(letrec ((f (lambda (x y z) el)))
e2)

in Scheme.



| LetRecFun Variable [Variable] ABLFExpr ABLFExpr

Function Invocations

Functions are invoked using their name and providing a list of arguments: Call "f" [el,
e2, e3] corresponds to f el e2 e3 in Haskell, or f(el, e2, e3) in Python.

| Call Variable [ABLFExpr]

Exercise 6 In ABLF.hs, Implement the translation function

translate :: ABLFExpr -> Lambda

translating from the ABLF language to Lambda, using Church encodings for numbers and
booleans. Operations on booleans and numerals, the comparison operators, and IfThen
should be straightforward translations, using the functions and terms you have implemented
in previous exercises. Let should follow the expansion given in the lecture.

Translating LetFun and Call involves two concepts:

* defining and applying abstractions with multiple arguments (currying), and
* (for LetFun) recursion using the fixpoint combinator.

Exercise 7 Define

factorialOf :: Integer -> ABLFExpr

factorialOf n should output an ABLF program which:

* defines a factorial function using LetFun
* calls the factorial function using Call with n as the argument

Test this function against a Haskell definition of factorial using the pipeline:
factorialOf n — translate — normalize — fromNumeral

I recommend starting with numerals corresponding to 1, 2 and 3, or you might end up
waiting a very long time wondering if the computation terminates.

The function normalizeWithCount from the Reduce module, behaves as normalize, except it
returns a pair containing the normalized term together with the number of reduction steps
it needed. In Assignment3.hs, fill in how many reduction steps were needed for factorials
of 1, 2, 3, 4, and 5. Warning: normalizing factorialOf 5 will take a VERY long time, so
have something to do in the meantime and only try it once you are sure everything else
works.



Exercise 8 (required for CS5400, optional for CS4400) In Church.hs, write a Lambda-
term implementing exponentiation. That is, expn n m should correspond to n™.

expn :: Lambda

In ABLF.hs, extend the ABLFExpr definition with an exponentiation construct

| Exp ABLFExpr ABLFExpr

and extend translate with a corresponding translation case. Provide tests for this new
construct.
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