Assignment 4
CS 4400 / CS 5400 Programming Languages

General

Due: Friday, November 22, 11:59pm.

Instructions:

1.
2.

Submissions are handled via the Khoury Handin server: https://handins.ccs.neu.edu/

Download the assignment pack from https://vesely.io/teaching/CS4400f19/m/cw/
04/Assignment4.zip.

. You can choose to complete this assignment as a pair. If you work as a pair, submit

as a pair. Completing an assignment with a partner but submitting individually is
considered cheating.

Complete the information in Assignment4.hs and submit all . hs files included in the
original pack.

. You are free to add top-level definitions, but add them to the bottom of each file,

below the separator line.

Each top-level function must include a type signature, followed by one or more
defining equations.

Make sure your file loads into GHCi or can be compiled by GHC without any errors.

Use the provided SimpleTests module to write your own tests in the tests function.
If appropriate, feel free to use QuickCheck for tests.

If some parts of the assignment are unclear, ask. Please do not wait until just before
the submission deadline.

Grade: To calculate your grade, we will take the following into account:

a) Quality of submission: Does your code compile without errors? Did you follow the

above steps?

b) Correctness: How well does it implement the specification?
¢) QA: How well did you test your code?


https://handins.ccs.neu.edu/
https://vesely.io/teaching/CS4400f19/m/cw/04/Assignment4.zip
https://vesely.io/teaching/CS4400f19/m/cw/04/Assignment4.zip

Minilmp

In the lecture, we have looked at a simple imperative language with assignment, while loops
and printing values to an output stream. In this assignment, we will extend this language
with more forms of looping, reading in values from an input stream, and arrays.

The Haskell module MiniImp contains an initial implementation of an interpreter. Expres-
sions are evaluated relative to the current store, which is used to look up the meaning of
variables

evalExpr :: Store Value -> Expr -> Maybe Value

The execution of statements is implemented by the function

execStmt :: (Stmt, Store Value, In) -> Maybe (Store Value, In, Out)

which takes an input configuration — a tuple containing the statement to be executed,
the current state of the store, and the input stream. It returns an output configuration,
containing the (potentially updated) store, the input stream (with values possibly removed),
and the output stream.

The input and output streams are represented as lists of integers. For input, the head of the
list is the next value to be read, new input is added at the end of the list. The output stream
grows left to right: the head is the oldest value printed by the program.

Exercises

Exercise 1 Complete the basic implementation of Minilmp. This includes the commands
Assign, Seq, While, If, and Print, and expressions

Exercise 2 Implement the semantics of Dowhile: DowWhile b c first evaluates its body b
and then continues repeatedly executing b while the condition c is true. Unlike with While,
the body b is executed at least once.

Exercise 3 Implement For, a for-loop construct. For x el e2 b evaluates the expression
el to a value v1 and assigns it to the variable x. Then it evaluates e2 to v2. If the value
stored in x is greater than v2 the for-loop is done. If the value in x is less than or equal to v2,
the body;, b, is performed. Then x is incremented by 1 and the for-loop is run again.

Exercise 4 Implement Read, which reads in a value from the input stream and saves it in
the given variable.



Exercise 5 Implement arrays. Array indices start from zero. We will represent arrays
as another type of value. Choose an appropriate representation of the array value and
implement the semantics of:

* the statement NewArray x el e2, which allocates a new array in the variable x. The
size is given by the value of el and all fields are to be initialized to the value of e2.

* the statement Set x el e2, which updates the array stored in x by storing the value
of e2 at the index resulting from evaluating el.

* the expression Get x e, which returns the value stored in the array x at the index
given by the value of e.

 the statement ForEach x a b which iterates over the array a. In each iteration, the
array element is assigned to x and the body b is executed.

For example, evaluating the program

Seq (NewArray "array" (Val (Num 5)) (Val (Num 1)))
(ForEach "x" "array" (Print (Var "x")))

should result in the output stream:

[Num 1, Num 1, Num 1, Num 1, Num 1]

For Set and Get, if the index is out of bounds, the execution should fail.

Exercise 6 Write a Minilmp program which reads 5 numbers from the input stream, stores
them in an array of an appropriate size. Then it reads one more number and prints each
element of the array multiplied by that number.

For example, if the program is executed with input stream

[1l 2' 3' 4’ 5' 2]

then the output stream should be:

[Num 2, Num 4, Num 6, Num 8, Num 10]

Exercise 7 (required for CS5400, optional for CS4400) Write a program which keeps
reading numbers from the input stream while they are greater than O, and prints their
running sum after each number is read.

For example, executing the program with the input stream



[10, 20, 30, 40, 50, 60, 70, 0]

should result in the following output stream

[Num 10, Num 30, Num 60, Num 100, Num 150, Num 210, Num 280]

or

[Num 10, Num 30, Num 60, Num 100, Num 150, Num 210, Num 280, Num 280]



	General
	MiniImp
	Exercises


