CS 4400 [5400
Programming Languages

[03: Names, Scope / Environments]

Ferdinand Vesely

September 17, 2019

F. Vesely CS 4400 [5400 September 17, 2019

1/18

Recap

Recap

We mentioned concrete syntax...

Concrete Syntax

What does an expression look like?
2 + 4
Exp
/ |\
/1 N\
/ | \
Exp '+' Exp
I I
I I
‘2! ‘4")

F. Vesely CS 4400 [5400 September 17, 2019 3/18

Recap

We talked about abstract syntax...

Abstract Syntax

What are the (semantically) significant / essential parts of an expression?

2+4

Do not worry about the details, what symbols are used to represent operations.

Recap

We talked about BNF...
BNF (Backus-Naur Form)

A formalism for specifying syntax (concrete or abstract).
Concrete:
<Digit> ::= IOI | I1l | l2l | I3I | I4I | I5I | I6I | I7I | I8I | Ig
<Decimal> ::= <Digit> | <Digit> <Decimal>
<Exp> ::= <Decimal>
| <Exp> '+' <Exp>
I 1 (1 <Exp> 1) 1

September 17,2019 5/18

Recap

BNF (Backus-Naur Form)

Abstract:
Assume <Nat>, the natural numbers
<AEXpr> ::= <AExpr> + <AExpr> // addition
| <Nat> // number literal
In Haskell:
type Nat = Integer -- type synonym for "naturals"
data AExpr = Add AExpr AExpr -- <AExpr> + <AExpr>
| Num Nat -- <Nat>

F. Vesely CS 4400 [5400 September 17, 2019 6/18

Recap

Haskell Abstract

Concrete

Add (Num 1) (Num 2) 1+2

(+ 1 2)
1+ 2
(1 2 +)

F. Vesely CS 4400 [5400

September 17, 2019

7/18

Recap

We talked about evaluators...
eval :: AExpr -> Integer

eval (Add ael ae2) = eval ael + eval ae2
eval (Num n) = n

F. Vesely CS 4400 / 5400 September 17, 2019 8/18

Recap

We talked about bindings, substitution...

let x = 3 in x + 4

F. Vesely CS 4400 / 5400 September 17, 2019 9/18

Today

More bindings
* On scope
* Environments

More than one type of value

F. Vesely CS 4400 / 5400 September 17, 2019 10 /18

Note

| will switch to Scheme-like s-expressions for concrete representations or
our languages.

That is, | will write:

(+ 10 20) instead of 10 + 20
(let (x 30) (+ x x)) instead of let x = 30 in X + X
etc.

This is to distinguish our example languages from Haskell.

F. Vesely September 17, 2019 11/18

Bindings

Let bindings

(Let (x (+ 10 20)) (* x X))

"Evaluate 10 + 20 to a value, then replace all occurrences of x
in (* x x) with that value. Finally compute the value of that
expression.

eval (Let x ael ae2) =
let vl = eval ael
ae2' = subst x vl ae2
in eval ae2'

We use a helper function, subst to do the actual substitution.

F. Vesely September 17, 2019 13/18

Substitution

subst :: Vars -> Integer -> AExpr -> AEXxpr
subst x v (Var y) | x ==y = Num v -- variable found!

| x /= Var y -- not "our" variable
subst _ _ (Num i) = Num i -- nothing to substitute

subst x v (Add ael ae2) = Add (subst x v ael) (subst x v ae2)
subst x v (Let y ael ae2)

| x ==y = Let y (subst x v ael) ae2 -- peculiar case

| x /=y = Let y (subst x v ael) (subst x v ae2)

F. Vesely CS 4400 / 5400 September 17, 2019 14/ 18

Scopes

(Llet (x 10) (+ x (Llet (x (+ x 32)) (x 2 x))))

let x
/ \
10 +
/ \
X\
let x
/ \
+ *
/ \ / \
X 32 2 X

F. Vesely CS 4400 / 5400 September 17, 2019 15/ 18

Environments

Maps between variables and values (or expressions)
* Can be thought of as “lazy” or “delayed” substitution.
Three operations:

1. empty :: Env a
» create an empty environment
2. add :: Var -> a -> Env a -> Env a

» add a binding to an environment
» sometimes also called update or extend

3. get :: Var -> Env a -> a
» find the value bound to the given variable
» also called find, Lookup

The type Env a = environments binding variables to values of type a
* eg,Env Integer

Environment Axioms

* Different possible implementations
* However, they need to satisfy these axioms:

1. get x (add x v env) == v
2. get x (add y v env) == get x env ifx /=y
3. get x empty is undefined (results in an error) for any x

F. Vesely CS 4400 / 5400 September 17, 2019 17/18

Environments

For example:
* Create an environment containing a single binding of "x" to the
integer 42 (the type of the result will be Env Integer)
add "x" 42 empty

* Find the binding for "x" in an environment (applying the axioms):

get "x" (add "y" 10 (add "z" 20 (add "x" 30 empty)))
= get "x" (add "z" 20 (add "x" 30 empty))

get "x" (add "x" 30 empty)

30

	Recap
	Bindings

