Assignment 8
CS 4400 Programming Languages

Start early and come to us with questions.

Due: 11pm on Thursday, Nevember 19,2020 Friday, November 20, 2020

Submission:
1. Submit the following files via https://handins.ccs.neu.edu/courses/119:

* Assignment08.hs
* Eval.hs

* Syntax.hs

* Repl.hs

2. This assignment is meant to be worked on and submitted in pairs, but you can choose to work
on your own. Note, that you need to have a team on Handins to be able to submit (a singleton
team or a pair).

3. At the very top, the file should contain a preamble following this template.

The file should contain two functions:

* main which starts the REPL, similarly to Assignment 6
* allTests which runs all tests for all modules

4. Every top-level definition must include a purpose statement (for functions) and a type signature,
followed by one or more defining equations.

5. Double-check that you have named everything as required and that functions required by this
assignment have the correct type signatures.

6. Make sure your file loads into GHCi or can be compiled by GHC without any errors. Your
grade might be reduced by up to 50% if your code does not compile and run.

Purpose: Simplifying the evaluator, building a base library, desugaring function definitions.

https://handins.ccs.neu.edu/courses/119

State of the Union

The previous assignment asked you to compile a subset of protoScheme into pure A-calculus using
Church encodings. In this assignment we will return to working on the main evaluator. Your code
base should contain a fairly mature evaluator for protoScheme, covering the following features.

Let-bindings and a variable references expressions

Arithmetic expressions with integer and floating point values

Boolean expressions, comparisons and equality checks, if expressions, conditionals

Pair values and selectors

Type predicates for integers, reals, numbers, pairs, and booleans

Global function definitions (with one or more arguments; recursive by default), function calls,
global variable definitions

oAb

In this assignment, we will concentrate on refactoring and improving the existing evaluator, factoring
some operations on values and implementing a base library (a “prelude”). We will also introduce
lambdas (a la the Intermediate Student Language) and functions as values.

Assignment Pack

The starter code pack for this assignment contains the following:
Parser.hs Changes:

e Functions added:

parseSExpressions :: String -> Maybe [S.Expr]
fromFile :: String -> I0 (Maybe [S.Expr])

The first one parses a string containing multiple s-expressions and returns a list of those
s-expressions if successful. The second reads a list of s-expressions from a file. These can be
useful if you want to write more complex test programs. Scheme-like line comments (; to the
end of line) are ignored

* In addition to (), s-expressions can be equivalently enclosed in [], similarly to Racket

SExpression.hs As before or minor adjustments.

Maps.hs The type of maps has been made abstract, hiding the implementation. Now provides
fromList for converting a list of key-value pairs to a map and tolList for the inverse.

SimpleTests.hs & SimpleTestsColor.hs As before or minor adjustments.

Result.hs An implementation of the Result datatype. Contains conversion functions toMaybe,
fromMaybe, fromMaybe' and toIO for converting between different monads.

Example programs (examplen.pss) The pack also contains some example programs that you can
use to test your interpreter. You can use fromFile (in Parser) with runProgram (after modify-
ing the type — see below). Hint: if you want syntax highlighting for these files in your editor,
Lisp or Scheme is the closest approximation.

Questions

Note: It is best not to tackle these questions in sequence one-by-one, but work on them simultane-
ously. For example, Q2 and Q5 are related by introducing two kinds of functions as values. Any
refactoring of eval will benefit from reducing the number of abstract syntax constructors — keeping
Q5 in mind will reduce the number of cases you need to modify for Q1.

1. If you haven’t already, change your evaluator to use environments instead of substitution for
local variables. Keep a separate environment for globals.

2. To allow defining anonymous functions, introduce lambda to the language. A lambda has a
list of arguments and a body. Generalize function calls to allow any expression in the function
argument (not just function names).

<Expr> :=
| (lambda (<Variable>x) <Expr>) -- anonymous functions
| (<Expr>+) -- function call/application

Don’t forget to modify any relevant function in Syntax.hs and to add tests.

3. Instead of having a special case for function definitions in globals, implement defun as a
desugaring. That means modify your program parser (programFromSExpression) to convert a
defun s-expression into a combination of define and lambda. See also this Wikipedia article.

4. Change the monad for eval, evalProgram and other partial functions to Result, replacing all
uses of Just in your evaluator with return and Nothing with a call to fail with an appropriate
error message.

5. We have several value operations in our language, which behave pretty uniformly, such as
arithmetic operations or comparisons. Each of these evaluates its operands to values, checks
that the values are of the right type, and applies an operation to them, wrapping the result
back as a value. If any of the arguments fail, the whole evaluation fails. This leads to repetitive
code and every time we introduce a new operation, we have to introduce new clauses to
all functions processing our abstract syntax. Here, we will remedy this by considering these
operations as predefined functions (and values). Introduce a “primitive operation” value to
your abstract syntax. This value should be able to represent built-in operations on values that

https://en.wikipedia.org/wiki/Syntactic_sugar

return a value (or fail). Primitive operations should be indistinguishable to the programmer:
wherever we can use a function value, we can use a built-in operation.

Build a “base library” of operations: an environment called base which contains all predefined
operations. If you are using the provided Maps module, Use fromList to build an environment
from a list of variable-value pairs.

As a minimum, the following operations should be converted into primitives: +, -, *, /, <, >, =,
not.

Add the operations <= (less than or equal) and >= (greater than or equal).

Extra credit: In addition to the operations listed above, move any additional candidate
operations from the evaluator to the new base library. Each converted operation (and the
corresponding reduction of the abstract syntax of protoScheme) will be assigned a small
number of extra points.

6. Change the runProgram function to have the type [S.Expr] -> Result S.Expr. Thatis, a
program should be expressed as a list of s-expressions. This will allow you (or us) to pair the
function with Parser. fromFile to read programs from a file.

Clarification of runProgram if you have to implement it from scratch: runProgram should take a
list of s-expressions which together represent a single program (definitions + expression). The
function should evaluate the program and, if successful, return the resulting value converted
to an s-expression. You might already have this function with the correct type and behavior.

Here are some test programs, that should run with this version of the evaluator:

(defun even? (n)
(and (integer? n)
(or (= n 0)
(odd? (- n 1)))))

(defun odd? (n)
(and (integer? n)
(and (not (= n 0))
(even? (- n 1)))))

(pair (odd? 42) (even? 42))

(defun pair-map (f p)
(pair (f (left p)) (f (right p))))

(pair-map (lambda (x) (* 2 x)) (pair 11 -2.5))

(defun fib (n)
(if (<= n 1)
n
(+ (fib (- n 1))
(fib (- n 2)))))

(fib 10)

Changelog

11/17/20 Moved the deadline.
11/18/20 Added a clarification for runProgram.

	State of the Union
	Assignment Pack
	Questions
	Changelog

