
Lecture 2: Abstract Syntax, BNF,
Algebraic Datatypes
CS4400 Programming Languages

Language; Syntax; Concrete syntax; Abstract syntax; Inductive definitions;
Grammars; BNF; Haskell types; Algebraic datatypes; Representing abstract
syntax in Haskell

Readings: EPL, Ch. 1; TAPL, 3.1-3.2

Overview

In this lecture we talk about concrete vs abstract syntax and BNF, a widely used notation
for specifying syntax. On the Haskell side of things, we’ll look at types, type signatures,
algebraic datatypes and, in particular, their use for representing abstract syntax trees.

Warning: Contains some math.

Syntax

If you took a course on formal languages, you might recall that a language is a set words
(sometimes more appropriately: expressions, terms, phrases) over an alphabet (which
is a set of symbols). Every programming language is a formal language (but not every
formal language is a programming language).

However, symbols can be arbitrarily combined in many ways, but we often recognize
only some combinations as part of a language.

How can we tell what belongs to a language and what doesn’t?

Rules → Syntax

1

Syntax is a collection of rules that determine which strings are valid, i.e., which strings
belong to a given language. In turn, syntax defines the set of valid strings, thus, defines
the language.

Concrete vs Abstract Syntax

When dealing with programming language, we often talk about the concrete syntax and
abstract syntax of a language.

Concrete syntax

• Simply put: what we seen when we look at a program
• All the details, such as, semicolons, parentheses, braces, brackets, precedence of

operators, etc.
• E.g., the same integer can be written down in multiple ways
• Gives us the necessary information to validate and parse strings of characters as

programs / phrases of a programming language

What does it consist of? How is it specified?

1. Lexical details

• What are the keywords
• What are the operators, separators, grouping characters
• Valid variable names
• Literals:

– numbers (integers, reals, . . .) – think of examples of number representations
– strings
– etc.

• Defines words of the language, also called tokens
• Regular languages are usually sufficient, most often specified using regular expres-

sions

– Examples:

DIGIT := [0123456789]
INTEGER := DIGIT+
REAL := INTEGER '.' INTEGER

2. Structure

• How are tokens combined to form phrases of a language
• E.g., how are expressions built up from numbers, operators, parentheses, variable

names, . . .
• Specified using context-free grammars, sometimes context-sensitive grammars
• We’ll see an example later

2

Abstract syntax

• Abstracts from the concrete representation
• Hides “distractions”, such as, grouping of expressions and statements – you usually

won’t see any parentheses in an abstract syntax spec
• Captures the (abstract) structure of a language phrase

When discussing semantics of programming languages, we want to start from abstract
syntax and forget about all the details of what the string representation looks like.

Specifying Syntax

There are multiple ways of specifying abstract syntax. Remember, that we are basically
defining a set of (abstract) phrases. We have different ways of defining syntactic sets.

One is enumeration: for a language with just a few simple phrases, we could just list
them all. But for more interesting examples, we use inductive definitions.

As an example, we will use a language of simple arithmetic expressions with integers,
addition, subtraction, multiplication, and division. Let’s call it SAE. E.g., - 1 is in SAE - 2
+ 3 ∈ SAE - 4 * 5 + 31 ∈ SAE

Here are a few equivalent ways of writing an inductive definition of a syntax:

Variant 1:

1. If n is an integer, then n is in SAE (If n ∈ Z then n ∈ SAE}
2. If e1 and e2 are in SAE then so are:

(a) e1 + e2
(b) e1 * e2
(c) e1 - e2
(d) e1 / e2

If we want to be pedantic, we add a clause saying “nothing is in SAE, unless it follows
from the above two rules”.

If we really wanted to be pedantic, we would define what is an integer in SAE

Why is 1 + 3 / 4 a SAE expression?

Because 1, 3 and 4 are integers and so are SAE expressions using 1. Since both 1 and 3
are SAE expressions, then so is 1 + 3 using 2. Since 1 + 3 is a SAE expression and 4 is
also, then so is 1 + 3 / 4 using 2.

Variant 2 (inference rules):

1.
n ∈ Z

n ∈ SAE

3

2.
e1 ∈ SAE e2 ∈ SAE

e1 + e2 ∈ SAE
e1 ∈ SAE e2 ∈ SAE

e1 * e2 ∈ SAE
...

These are inference rules. They can be read as “If (aka premise) holds, then so does (aka
conclusion)”. This style is used heavily in some styles of semantics. We will be mainly
using inference rules when we talk about types. But they might come in handy at other
times to quickly write some ideas down.

Metavariables Note, that n, e1 and e2 are what we call meta-variables. They usually
stand for a (restricted or arbitrary) piece of syntax. For example e1 + e2 matches any

Why is 1 + 3 / 4 a SAE expression?

1 ∈ Z
1 ∈ SAE

3 ∈ Z
3 ∈ SAE

1 + 3 ∈ SAE
4 ∈ Z

4 ∈ SAE
1 + 3 / 4 ∈ SAE

This is a derivation (tree). We obtain it by taking a rule, substituting its meta-variables so
that the conclusion contains what we are trying to show (in this case 1 + 3 / 4 ∈ SAE
with e1 replaced by 1 + 3 and e2 by 4), then applying further rules to the first rule’s
premises, keeping the substitutions consistent. We repeat this, until we reach rules that
do not have premises to which rules need to be applied.

Variant 3 (Grammar in Backus-Naur Form aka BNF):

<SAE> ::= <INTEGER>
| <SAE> + <SAE>
| <SAE> * <SAE>
| <SAE> - <SAE>
| <SAE> / <SAE>

When talking about syntax we will be mostly using grammars in BNF notation like
this. Here, meta-variables are things enclosed in angle-brackets: <SAE> and <INTEGER>.
The other symbols (+, -, *, /, the integers) are what we call terminals or terminal
symbols. They are called that, because they cannot be replaced by any other symbol:
meta-variables can be replaced by an appropriate combination of meta-variables and
terminals (following the grammar), but terminals are final.

Each line of the grammar is called a production. The <SAE> before ::= is called the head
of the production(s).

Now, why is 1 + 3 / 4 a SAE expression?

4

<SAE> => <SAE> / <SAE>
=> <SAE> + <SAE> / <SAE>
=> <INTEGER> + <SAE> / <SAE>
=> 1 + <SAE> / <SAE>
=> 1 + <INTEGER> / <SAE>
=> 1 + 3 / <SAE>
=> 1 + 3 / <INTEGER>
=> 1 + 3 / 4

This is also called a derivation.

BNF nicely corresponds to algebraic data types in Haskell and we will visit this at the
end of the lecture.

For comparison, here is what a concrete syntax BNF for SAE might look like in its full
glory:

<Expression> ::= <Expression> + <Term>
| <Expression> - <Term>
| <Term>

<Term> ::= <Term> * <Factor>
| <Term> / <Factor>
| <Factor>

<Factor> ::= (<Expression>)
| <Integer>

<Integer> ::= <Integer> <Digit>
| <Digit>

<Digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Haskell Corner

We have seen some basic examples of Haskell: how to write expressions, how to define
basic function using basic pattern matching, quards and conditional expressions.

Today we will talk about basic types, type signatures and defining our own types. We
will also look more at pattern matching and working with lists.

5

Types

I mentioned some basic types in Haskell: Integer, Bool. Another basic type is Char.
There is also a second integer type called Int. The difference is that, whereas Integer
is a type of integers of arbitrary length (try it out!), Int is the type of bounded machine
integers. Unfortunately, we cannot just pick one and stick with it, since both are being
used by Haskell’s libraries. We might have to convert one to the other from time to time.
Also, in Haskell, strings (String)are not a basic (primitive) type.

We talked about lists. A list type is written [a], where a is the name of the element type.
For example, [Integer] is the type of lists of integers. By extension, [[Bool]] is the
type of lists of lists of booleans.

Type names (actually type constructors) always start with an upper-case letter.

Type Signatures

Just like you were used to in Fundies 1, we will be writing down type signatures in
Haskell, along with purpose statements, for every top level definition. Unlike in Fundies
1, and similarly to Fundies 2, Haskell actually checks our types. In reality, we wouldn’t
really need to write down most signatures, as GHC is smart enough to infer the types for
us. However, the types that we get this way are often too general, which can lead to
errors and error messages that are difficult to process. Moreover, type signature serve as
a documentation for our code that is moreover checked by the compiler. Bottom-line:
always write type signatures.

Type signatures are similar to the ones you were writing in Fundies 1, but Haskell uses
:: instead of : and we use -> to also separate arguments, not just the input and output
of a function. More on why we use these arrows later. Here is a simple example:

name :: String
name = "Ferd"

x :: Integer
x = 4

first5Primes :: [Integer] -- list of integers
first5Primes = [2, 3, 5, 7, 11]

Here are function examples. First in BSL:

6

;; area-of-square : Number -> Number
;; Compute the area of a square.
(define (area-of-square a) (* a a))

;; make-list : Number Number -> ListOf Number
;; Generate a list with the given element repeated n-times.
(define (make-list n x)

(if (> n 0) (cons x (make-list (- n 1) x)) null))

and then the equivalent in Haskell:

-- |Compute the area of a square.
areaOfSquare :: Integer -> Integer
areaOfSquare a = a * a

-- |Generate a list with the given element repeated n-times.
makeList :: Integer -> Integer -> [Integer]
makeList n x =

if n > 0 then x : makeList (n - 1) x
else []

Defining Types

The easiest way we can introduce a new type, is to introduce a type synonym. Although
this is cheating – we are not really introducing a new type, just giving another type a
new name. Type synonuyms are introduced using the type keyword.

type MyNumber = Integer

type ListOfStrings = [String]

In fact, String is just a synonym – for a list of characters:

type String = [Char]

Defining Algebraic Datatypes

Algebraic Datatypes (ADTs), or inductive or recursive datatypes are introduced using
the data keyword. Cases are serparated using |. These can be simple enumerations:

7

data Color = Red | Green | Blue

data Direction = Up
| Down
| Left
| Right

data Bool = False | True

or they can be tagged values:

data NumberOrName = Number Integer
| Name String

or they can be proper recursive / inductive datatype definitions:

data MyIntegerList = Nil
| Cons Integer MyIntegerList

In these examples, the first word of each case (e.g., Nil, Number, Red, Up) is a con-
structor, implying that it constructs a value of the corresponding datatype. Just like
type constructors, they always start with an upper-case letter. What comes after the
constructors (in the Number, Name and Cons cases), are the types of their arguments.
E.g., to construct a Name value of the NumberOrName type, I need to give it an argument
of type String:

Name "Zaphod Beeblebrox"

How does this relate to abstract syntax? Well, the above, actually, specifies the abstract
syntax of integer lists:

<MyIntegerList> ::= Nil
| Cons <Integer> <MyIntegerList>

See the similarity?

ADTs and Pattern Matching

Functions operating on ADTs are specified using pattern matching:

8

myLength :: MyIntegerList -> Integer
myLength Nil = 0
myLength (Cons n l) = 1 + myLength l

-- we can also use the case construct:
colorToString :: Color -> String
colorToString color =

case color of
Red -> "red"
Green -> "green"
Blue -> "blue"

As you can see, (basic) patterns are built up from constructors and variables. A variable
matches any value and the matched value is then bound to the variable inside the
right-hand side of the defining equation, or on the right-hand side of the -> arrow if we
are matching using case.

If we are not interested in some value, we can use the “wildcard” pattern _, which
matches anything and discards whatever it matched.

isName :: NumberOrName -> Bool
isName (Name _) = True
isName _ = False

A Note on Lists

In fact, “native” Haskell lists are datatypes just like any other. They just happen to use
special constructors for the nil ([]) and cons (infixed :) cases. Otherwise they behave
just like other datatypes:

length

Back to Abstract Syntax

Now let us translate SAE’s BNF into a Haskell datatype. We cannot use the terminal
symbols themselves, so we will use mnemonics: Add, Sub, Mul, and Div.

9

data SAE = Number Integer -- each case needs to have a constructor!!
| Add SAE SAE
| Mul SAE SAE
| Sub SAE SAE
| Div SAE SAE

For comparison, here is our original BNF definition:

<SAE> ::= <INTEGER>
| <SAE> + <SAE>
| <SAE> * <SAE>
| <SAE> - <SAE>
| <SAE> / <SAE>

10

	Overview
	Syntax
	Concrete vs Abstract Syntax
	Specifying Syntax

	Haskell Corner
	Types
	Type Signatures
	Defining Types
	Defining Algebraic Datatypes
	ADTs and Pattern Matching
	A Note on Lists
	Back to Abstract Syntax

