
Lecture 06: Intro to Equational
Reasoning; Environments

CS4400 Programming Languages

Readings:

Overview

In the previous lecture we introduced the notion of bindings, that is, associating names
with a computed value to be re-used later. We also introduced the notion of substitution
to deal with replacing names with values. Substitution is a syntactic operation: it
operates on the whole AST, transforming it in the process. Such transformed AST is
the evaluated. Today we will look at another model of associating meaning to names
in a program: environments. However, we start with an introduction to the topic of
equational reasoning on Haskell programs.

Intro to Equational Reasoning with Haskell

Today on “The things you might or might not remember from high-school algebra”:
algebraic laws. These are equations that specify some properties of arithmetic operations.
We can use them to manipulate equations without changing their meaning, usually to
make the our computations easier.

• commutative laws

x + y = y + x

x · y = y · x

• associative laws

1



x + (y + z) = (x + y) + z

x · (y · z) = (x · y) · z

• distributive law

x · (y + z) = x · y + x · z

Side note. these laws can be proven from these axioms for addition and multiplica-
tion:

x + 0 = x

x + (y + 1) = (x + y) + 1

x · 0 = 0
x · (y + 1) = x + (x · y)

Using these laws (and the definition of 2 and multiplication), we can, for example, show
that (x + y)2 = x2 + 2xy + y2:

(x + y)2

= { definition of squaring }
(x + y) · (x + y)

= { distributivity }
(x + y) · x + (x + y) · y

= { commutativity (twice) }
x · (x + y) + y · (x + y)

= { distributivity (twice) }
(x · x + x · y) + (y · x + y · y)

= { associativity }
x · x + (x · y + (y · x + y · y))

= { associativity }
x · x + ((x · y + y · x) + y · y)

= { commutativity }
x · x + ((x · y + x · y) + y · y)

= { definition of 2 (twice) }
x2 + ((x · y + x · y) + y2)

= { definition of multiplication }
x2 + ((2 · (x · y)) + y2)

= { conventions for () }
x2 + 2 · x · y + y2

2



Why is this interesting? Well, some of these laws have implications for computational
efficiency. For example, consider the difference between

x * y + x * z

and

x * (y + z)

They compute the same result, but which one is more efficient? Which one would you
prefer to use in a loop that runs 1014 times?

The big idea here is, that we can use the same style of reasoning for Haskell programs.
And Haskell is particularly suitable for this style of reasoning about programs.

Any definition in Haskell can be read as an equation. E.g.,

double :: Integer -> Integer
double x = x + x

is a definition, but the defining equation also gives us a property (in this case an axiom).
Whenever we see double x (where x is an arbitrary expression), we can replace it with
the right hand side x * x. Not only that: we can also go in the opposite direction and
replace x * x with double x.

We have to be careful, however, because the order of equations is significant in Haskell,
so we might not be always able to simply replace whatever matched. Consider:

isZero :: Integer -> Boolean`
isZero 0 = True
isZero n = False

Replacing isZero 0 with True and vice-versa is always OK. However, isZero n is
not valid for arbitrary n, only if n 6= 0. We have to be careful with patterns that are
overlapping. The above can be rewritten to an explicit equivalent with guards:

isZero :: Integer -> Boolean`
isZero 0 = True
isZero n | n /= 0 = False

Now we made the patterns non-overlapping. In math this would be something like
this:

3



isZero(0) = true
isZero(n) = false if n 6= 0

Example: Show that the reverse of a singleton list is the list itself.

reverse :: [a] -> [a]
reverse [] = []
reverse (x : xs) = reverse xs ++ [x]

Trying to show: reverse [x] = x.

reverse [x]
= { syntactic sugar for [x] }

reverse (x : [])
= { definition of reverse }

reverse [] ++ [x]
= { definition of reverse }

[] ++ [x]
= { definition of (++)1 }

[x]

Another example: not (not x) = x for any (boolean) x.

Definition:

not :: Bool -> Bool
not True = False
not False = True

We don’t know what x is, so we need to consider all cases (case analysis).

Consider x = True:

not (not True)
= { definition of not }

not False
= { definition of not }

True
1The operator (++) (list append/concatenation) is defined in the Prelude as follows:

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : xs ++ ys

4



Now consider x = False:

not (not False)
= { definition of not }

not True
= { definition of not }

False

When we revisit equational reasoning again, we will look at performing induction to
show more interesting properties for numbers or lists.

But we’re doing programming languages and we discussed how us defining an interpreter
in Haskell means that we are relating the meaning our object PL to the meaning of
Haskell. So, as another example, let’s use our simple SAE interpreter to show that our
Add operation inherits associativity from Haskell:

eval :: SAE -> Integer
eval (Number n)
eval (Add e1 e2) = eval e1 + eval e2
...

We want to show that eval (Add e1 (Add e2 e3)) = eval (Add (Add e1 e2)
e3).

eval (Add e1 (Add e2 e3))
= { definition of eval }

eval e1 + eval (Add e2 e3)
= { definition of eval }

eval e1 + (eval e2 + eval e3)
= { associativity of +2 }

(eval e1 + eval e2) + eval e3
= { definition of eval }

eval (Add e1 e2) + eval e3
= { definition of eval }

eval (Add (Add e1 e2) e3)

Note, that a Maybe output type complicates this picture somewhat, but we can still make
it work.

Where can this go wrong in PL?

In math, we expect 2x = x+x to apply universally. How about programming languages?
Scheme (or BSL)? Consider:

2See “Numeric type classes” at https://hackage.haskell.org/package/base-4.14.0.0/docs/Prelude.html.
Okay, what’s the big deal with equational reasoning in Haskell?

5

https://hackage.haskell.org/package/base-4.14.0.0/docs/Prelude.html


(define (f x)
(+ x x))

Question: Does (* 2 (f 20)) = (+ (f 20) (f 20)) hold?

How about:

(define (g x)
(begin
(write x)
(+ x x)))

or similarly in Java:

private int g(int x) {
System.out.println(x);
return x + x;

}

or, again in Java:

int c = 0;

private int g(int x) {
c++;
return x + x;

}

Question: Does (* 2 (g 20)) = (+ (g 20) (g 20)) (or 2 * g(x) = g(x) + g(x))
hold?

In many programming languages, the possibility of side-effects (printing, mutating a
variable, setting off a nuclear bomb, . . . ) breaks this. Many programming languages do
not have referential transparency:

An expression is called referentially transparent if it can be replaced with its
corresponding value without changing the program’s behavior.3

On the other hand, how would we write the above example in Haskell? Let’s start with
f:

3John C. Mitchell (2002). Concepts in Programming Languages. Cambridge University Press

6



f x = x + x

Here, 2 * f x = f x + f x definitely holds. Just like in Scheme. No issue here.

How do we define an equivalend of g?

g x = ... putStrLn (show x) ...x + x

What do we replace ... with? First of all, what is the type of g? For f, it is
Integer -> Integer (more generally Num a => a -> a). For g, however, we need to
go into IO!

g x = do
putStrLn (show x)
return (x + x)

For now, think of return exclusively as a way of returning values from IO computations
and don’t use them anywhere else but IO functions that also return a value. We’ll find
more uses of them later. Well this means that the type of g is

g :: Integer -> IO Integer

Now, a function in with this type cannot be even simply used in an expression: 2 * g x
results in a type error. We can only use g inside of another IO computation!

do
y <- g x
... (2 * y) ...

We are forced to make things very explicit:

1. Run the computation g x
2. Retrieve the value
3. Use the value in a computation.

There is no other way.

The separation of pure and “impure” code gives us guarantees. When we do see 2 * f x,
we can really replace it with f x + f x.

7



Bindings with Environments

Now that we equipped ourselves with the basics of equational reasoning, let’s return to
bindings. We used substitution: walk the AST and replace every occurrence of the given
variable with the given value. But we are potentially doing extra work: what if some
variable references are never reached? E.g.:

(let (x (+ 11 22)) (* 12 32))

Or a more obscured one:

(let (x (* 24 15))
(+ (/ 20 (- x x))

(+ x (/ x 2))))

Here, not all x are needed. Why?

We can use something like a cache of substitutions. Instead of eagerly substituting
all variables as soon as we encounter a let, we remember what x was and continute
evaluations until we actually need the value of x.

How do we remember what the value associated with a variable was? A map, i.e., a set
of mappings between names (keys) and values. How do we represent a map? There are
multiple choices: hashmap, association lists, binary search trees, . . .

But. . . these are all the same to us. We can choose whichever we want. All we need
is that they satisfy a few axioms. Let’s say that a map that has no mappings is called
empty. Let’s say that we have an operation which adds a mapping to a given map and
returns an updated version, called set. And let’s say that we have an operation, get,
which, given a key and a map, finds the corresponding value. These operations should
satisfy the following:

get x (set x v m) = v
get x (set y v m) = get x m, if x /= y

Additionally, we might say that get x empty is undefined for any x.

Let’s defer defining an actual representation until later and just go ahead and program
an environment-based evaluator. However, let us sketch the types of get, set, empty:

8



type Map k v
type Env = Map Variable Integer

get :: Variable -> Env -> ???

set :: Variable -> Value -> Env -> Env

empty :: env

Continued in Lec06.hs available on the website. These notes might be updated and
extended at a later date, based on questions and comments.

9


	Overview
	Intro to Equational Reasoning with Haskell
	Bindings with Environments

