
Lecture 9: From Maybe to Monads
CS4400 Programming Languages

Readings:

• Hutton: Programming in Haskell, Chapters 10 and 12
• Learn You a Haskell for Great Good, Chapters Input and Output & A Fistful of

Monads

From Maybe to Monads

Since we introduced the Maybe types, we’ve been dealing more and more with the
following pattern:

eval (Foo e1 e2) =
case eval e1 of

Just v1 ->
case eval e2 of

Just v2 -> Just (... v1 ... v2 ...)
Nothing -> Nothing

Nothing -> Nothing

How do we abstract this?

What is happening here?

We

1. evaluate e1, if it fails, fail, if not bind the result to v1
2. evaluate e2, if it fails, fail, if not bind the result to v2
3. combine v1 and v2 into a result.

1

http://learnyouahaskell.com/input-and-output
http://learnyouahaskell.com/a-fistful-of-monads
http://learnyouahaskell.com/a-fistful-of-monads

First idea:

We abstract e1 and e2 and the expression in which we are using v1 and v2.

eval2 :: Expr -> Expr -> (Value -> Value -> Maybe Value) -> Maybe Value
eval2 e1 e2 f =

case eval e1 of
Just v1 ->

case eval e2 of
Just v2 -> f v1 v2
Nothing -> Nothing

Nothing -> Nothing

and our eval clause simplifies to:

eval (Foo e1 e2) = eval2 e1 e2 f
where f v1 v2 = Just (... v1 ... v2 ...)

But we can do better by taking eval2 and making it more general and thinking of it as
applying a partial binary function to two Maybe results.

apply2 :: (a -> b -> Maybe c) -> Maybe a -> Maybe b -> Maybe c
apply2 f (Just x) (Just y) = f x y
apply2 _ _ _ = Nothing

rewriting our eval case as:

eval (Foo e1 e2) = apply2 f (eval e1) (eval e2)
where f v1 v2 = Just (... v1 ... v2 ...)

Compared to eval2, apply2 gives as a little bit more flexibility as to what we apply it
to. It still captures only one specific pattern of evaluation.

This takes care of evaluating arithmetic operators where we always first evaluate both
operands before proceeding to apply the actual operation. But what about cases where
the evaluation of one operand depends on the result of the other, such as let?

eval (Let x e1 e2) =
case eval e1 of

Just v1 -> eval (subst x v1 e2)
Nothing -> Nothing

2

Here we cannot simply evaluate both e1 and e2, as the evaluation of e2 depends on the
result of e1.

We can split it into two subexpressions, remembering the variables that are available to
both:

-- known variables x e1 e2
eval e1 :: Maybe Value
eval (subst x v1 e2) :: Maybe Value

But where does v1 come from? What we are looking for is a way of “piping” the
result from eval e1 into eval (subst x v1 e2) as v1. Think of Unix pipes, but with
variable names.

We need to make the second expression dependent on v1, which we can do by introduc-
ing a lambda:

-- known variables x e1 e2
eval e1 :: Maybe Value
(\v1 -> eval (subst x v1 e2)) :: Value -> Maybe Value

Let’s give them names: x and f and rewrite the case expression:

case x of
Just v -> f v
Nothing -> Nothing

What happens if we abstract x and f?

pipe x f =
case x of

Just v -> f v
Nothing -> Nothing

Let us rewrite the Let clause to use this function

eval (Let x e1 e2) =
pipe (eval e1) (\v1 -> eval (subst x v1 e2))

It gets better if we use infix notation:

3

eval (Let x e1 e2) =
(eval e1 `pipe` (\v1 -> eval (subst x v1 e2))

or even styled as

eval (Let x e1 e2) =
eval e1 `pipe` \v1 ->
eval (subst x v1 e2)

Note, how pipe is more general than apply2: we can express the add case as

eval (Add e1 e2) =
eval e1 `pipe` \v1 ->
eval e2 `pipe` \v2 ->
Just (v1 + v2)

If we oonly used pipe with eval, its concrete type would be

pipe :: Maybe Value -> (Value -> Maybe Value) -> Maybe Value

However, there is nothing in the definition of pipe that says it has to only work with
Values so its type can be more general. In fact, there is nothing that says that the
argument x’s type and pipe’s return type need to be the same: the function f can The
actual, general type of pipe is:

pipe :: Maybe a -> (a -> Maybe b) -> Maybe b

This kind of “pipe” is so useful, that it’s predefined in Haskell’s base libraries as an
operator of the Monad class:

(>>=) :: Monad m -> m a -> (a -> m b) -> m b

When >>= is used with Maybe, we simply replace the m in the above type with Maybe
and get (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b - the type of our pipe
function. Now we can rewrite our Add evaluation as:

eval (Add e1 e2) =
eval e1 >>= \v1 ->
eval e2 >>= \v2 ->
Just (v1 + v2)

4

What are monads? There are various ways of thinking about monads. One is thinking
about them as containers: we have a type, e.g., Value and we wrap them up in a Maybe
container as Maybe Value. This is somewhat misleading, however. A better way is to
think of monads as “values with context”. But it’s probably best to think of monads in
terms of what they can do for us: they allow us to express and chain computations.

In our eval example above, we evaluate e1 and, if we succeed, remember its result
as v1 then we evaluate e2 and, if we succeed, remember the result as v2 and finally
we signal success by wrapping the result of adding v1 and v2 in Just. If any of
these evaluations returns Nothing, the computation will be short-circuited and return
Nothing immediately. To emphasize this chaining aspect, Haskell provides special
notation using the do keyword. The above eval clause can be rewritten as

eval (Add e1 e2) = do
v1 <- eval e1
v2 <- eval e2
Just (v1 + v2)

In addition to >>=, the Monad class defines the function return :: Monad m => a -> m a.
We can think of this as the tool that allows us to take a value and wrap it up as a
computation. For Maybe, return is simply defined as

return :: a -> Maybe a
return x = Just x

Using this, the final version of our eval example is

eval (Add e1 e2) = do
v1 <- eval e1
v2 <- eval e2
return (v1 + v2)

The same notation can be used with any monad. In particular, IO, the type of I/O
computations (actions) is also a monad. This is why we use do to write interactive
programs:

getAndGreet :: IO String
getAndGreet = do

putStrLn "Enter your name: "
name <- getLine
putStrLn $ "Hello, " ++ name
return name

main :: IO ()

5

main = do
putStrLn "Welcome"
name <- getAndGreet
putStrLn $ "Bye, " ++ name

The above can be rewritten using >>=:

getAndGreet :: IO String
getAndGreet =

putStrLn "Enter your name: " >>= _ ->
getLine >>= \name ->
putStrLn ("Hello, " ++ name) >>= _ ->
return name

main :: IO ()
main =

putStrLn "Welcome" >>= _ ->
getAndGreet >>= \name ->
putStrLn $ "Bye, " ++ name

Back to Maybe: with Maybe the do notation has an additional advantage: we can
use pattern match on the left-hand side of <- and if the match fails, our code will
automatically return Nothing.

For example, say our Value type is defined as

data Value = Integer Integer
| Boolean Bool

The we want to only allow addition for integer values:

eval (Add e1 e2) =
case eval e1 of

Just (Integer i1) ->
case eval e2 of

Just (Integer i2) -> Just (Integer (i1 + i2))
_ -> Nothing

_ -> Nothing

This can be rewritten simply as:

6

eval (Add e1 e2) = do
Integer i1 <- eval e1
Integer i2 <- eval e2
return (Integer (i1 + i2)

Now, not only will the code return Nothing if either eval returns Nothing, it will also
return Nothing if the value does not match the pattern on the left side of <-.

7

	From Maybe to Monads

