
Lecture 13: Programming in Pure
Lambda Calculus

CS4400 Programming Languages

Readings: [TAPL], Chapter 5

Multiple Arguments

So far, we have looked at lambda abstractions which only take a single argument.
However, unary functions are only a small part of our experience with programming.
We use functions with multiple arguments all the time. How do we pass more than one
argument to a lambda?

One approach would be to extend the calculus with a notion of tuples. Perhaps throw in
some pattern matching, for good measure:

(λ(x, y). x y) (a, b)

However, this means that we are abandoning the very minimal core lambda calculus
with all its simplicity. And we don’t have to! As we know well by now, applying an
abstraction simply replaces its bound variable with the argument that it’s applied to, as
in this trivial example:

(λx.x y) b −→ (x y)[x := b] = (b y)

What happens if the abstraction actually just returns another abstraction.

(λx. (λy. x y)) b −→ (λy. x y)[x := b] = (λy. b y)

Since neither of the bound variable of the inner abstraction (y) and the variable we
are substituting for (x), nor the bound variable of the inner abstraction (y) and the
term we are substituting (b) are in conflict, we simply substitute x for b inside the inner
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abstraction. This yields an abstraction which can be applied to another argument. That
is applying (λx. (λy. x y)) to b returned an abstraction which is “hungry” for another
argument. We can now apply that abstraction to another argument:

(λy. b y) a −→ (b y)[y := a] = b a

Let’s do the same in one expression:

(((λx. (λy. x y)) b) a −→ ((λy. x y)[x := b]) a
= (λy. b y) a
−→ (b y)[y := a]
= (b a)

We just applied an abstraction to two arguments. To make this a little easier to see, we
can use left-associativity of application and the fact that the scope of a binder goes as far
right as possible to rewrite the original expression as

(λx. λy. x y) b a

This technique is called currying (after Haskell Curry, although he was not the first
one to come up with it). It is so common that, usually a short-hand is introduced for
abstractions with more than one argument:

(λx y. ...) ≡ (λx. λy. ...)
(λx y z. ...) ≡ (λx. λy. λz. ...)

etc.

If we allow arithmetic in our lambda expressions a nice example will be:

(
λx y.

x+ y

y

)
4 2 −→

(
λy.

4 + y

y

)
2

−→ 4 + 2
2

Currying is used as the default for functions of multiple arguments by Haskell and
OCaml (determined mostly by their standard libraries). On the other hand, Standard
ML’s library uses tuples as default.
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Data types

We see that we can represent functions with multiple arguments in PLC. Surely, for
representing other kinds of data (such as booleans, numbers, data structures), we need
to introduce extensions and add these as primitive operations? Not really. . .

Booleans

Many types of values can be represented using Church encodings. Booleans are probably
the simplest and most straightforward:

true = λt f. t (= λt. λf. t)
false = λt f. f (= λt. λf. f)

What do these mean? The representation of true is a function that takes two arguments
and returns the first one. On the other hand, false returns its second argument. To
make sense of these, we need to put them to work and see how they work with boolean
operations.

We start with the conditional: if-else. It should take three arguments and return its
second one if the first one evaluates to true, and its third argument otherwise. That is
we are looking for an expression:

if-then true x y −→ ... −→ x

and

if-then false x y −→ ... −→ y

Notice something?

true x y −→ x

false x y −→ y

That means that all if-then needs to do is to apply its first argument to its second and
third argument, since the boolean representation takes care of the selection itself:

if-then = λb t f. b t f

What about boolean operations?

Let’s try to look at conjunction: and. We look for ??? to put in:
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(λa b. ???) true true --> ... --> true
(λa b. ???) true false --> ... --> false
(λa b. ???) false true --> ... --> false
(λa b. ???) false false --> ... --> false

First note that true true x --> true for any x, so it seems that λa b. a b x could
work if we find an appropriate x:

(λa b. a b x) true true --> (λb. true b x) true --> true true x --> ... --> true

Now note that in all but the first case and should reduce to false. In the second case,

(λa b. a b x) true false --> ... --> true false x --> ... --> false

for any x, so that still works. Now, how can we get false true x --> false? By
taking x to be false:

(λa b. a b false) false true --> ... --> false true false --> ... --> false

The final case also works:

(λa b. a b false) false false --> ... --> false false false --> ... --> false

Hence
and = λa b. a b false

Another way of thinking about the definition of and is to define it terms of if-then-else.
E.g., in Haskell,

and :: Bool -> Bool -> Bool
and a b = if a then b else False

which just says that if the first argument is true then the result of and depends on the
second one, and if its false the result will be false regardless of the second argument.

Based on this, we can express the and operation using if-else, which we defined
above, and show that it is equivalent to the previous definition by simplifying it using
normal order reduction:

and = λa b. if-else a b false
= λa b. (λb t f. b t f) a b false
--> λa b. (λt f. a t f) b false
--> λa b. (λf. a b f) false
--> λa b. a b false

Can you come up with a representation of or? not?
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Pairs

Pairs can be encoded using an abstraction which “stores” its two arguments:

pair = λl r s. s l r

You can think of a s as a “chooser” function which either picks l or r. Selectors for the
first and second element are then, respectively, defined as:

fst = λp. p (λl r. l)
snd = λp. p (λl r. r)

Take a look at the selector functions we pass to the pair representation. Are they familiar?
(Hint: booleans)

Natural Numbers: Church Numerals

Natural numbers are Church-encoded as Church numerals:

zero = λs z. z
one = λs z. s z
two = λs z. s (s z)
three = λs z. s (s (s z))
...

A numeral for n can be understood as a function that takes some representation of a
successor function and some representation of zero and applies the successor to zero n
times.

How about operations on numerals? The successor of a numeral λs z... is computed
by inserting one more application of s inside of the abstraction:

succ (λs z. z) --> ... --> λs z. s z
succ (λs z. s z) --> ... --> λs z. s (s z)
succ (λs z. s (s z)) --> ... --> λs z. s (s (s z))
...

We know that succ takes a numeral (which is an abstraction) and returns another
numeral, which is again an abstraction:

succ = λn. (λs z. ...n...)
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Taking λs z. z as an example input:

(λn. (λs z. ...n...)) (λs z. z)
--> (λs z. ...(λs z. z)...))
--> (λs z. s z)

We see that we need to apply an extra s under λs z.:

(λs z. s ...(λs z. z)...) --> ... --> (λs z. s z)

To do this we need to “open” the abstraction representing 0. This can be achieved by
passing the outer s and z as arguments. We achieve what we wanted.

(λs z. s ...(λs z. z) s z...) --> (λs z. s ...z...) = (λs z. s z)

Working backwards, we arrive at our successor function:

(λs z. s z)
<-- (λs z. s ((λs z. z) s z))
<-- (λn. λs z. s (n s z)) (λs z. z)
= succ (λs z. z)

Successor can be thus defined as:

succ = λn. (λs z. s (n s z)) = λn s z. s (n s z)

Once we have a successor operation, defining addition is quite simple if we keep in mind
that a Church numeral m applies its first argument (s) to its second argument (z) m
times:

plus = λm n. m succ n

Multiplication follows the same principle:

m ∗ n = n+ (...n︸ ︷︷ ︸
m times

+0)

Hence:

times = λm n. m (plus n) zero
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We can define subtraction via a predecessor function, which is surprisingly more tricky
than the successor function. For a numeral λs z. s (s ... (s z)), the predecessor
should return a numeral with one less s. One way of defining a predecessor is via a
function that “counts” the number of s applications in a numeral, but also remembers
the previous count, that is, one less than the total number of applications of s:

pred = λn. snd (n (λp. pair (succ (fst p)) (fst p)) (pair zero zero))

Here the numeral n (of which we want to compute the predecessor) is applied to two
arguments:

1. The function (λp. pair (succ (fst p)) (fst p)). This function takes a pair
(bound to p) containing two numerals. It returns a pair containing the successor
of the first element of p, together with its original value. That means, everytime
the function is applied to a pair containing numerals n and m, it returns a pair with
numerals corresponding to n + 1 and n (m is discarded).

2. A pair containing two zeros: (pair zero zero).

Finally, the second element of the pair is returned – which contains the count of s
applications, except for the last one.

Here is an example. We let f = (λp. pair (succ (fst p)) (fst p))

pred three
= (λn. snd (n f (pair zero zero))) (λs z. s (s (s z)))

--> snd ((λs z. s (s (s z))) f (pair zero zero))
--> snd ((λz. f (f (f z))) (pair zero zero))
--> snd (f (f (f (pair zero zero))))

= snd (f (f ((λp. pair (succ (fst p)) (fst p)) (pair zero zero))))
--> snd (f (f (pair (succ (fst (pair zero zero))) (fst (pair zero zero)))))
--> ...
--> snd (f (f (pair (succ (fst zero)) (fst zero zero))))
--> snd (f (f (pair (succ zero) zero)))
--> ...
--> snd (f (f (pair one zero)))

= snd (f ((λp. pair (succ (fst p)) (fst p)) (pair one zero)))
--> snd (f (pair (succ (fst (pair one zero))) (fst (pair one zero))))
--> snd (f (pair (succ one) one))
--> ...
--> snd (f (pair two one))
--> ...
--> snd (pair (succ two) two)
--> ...
--> snd (pair three two)
--> ...
--> two
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To subtract n from m, we need to take 1 away from m n times.

minus = λm n. n pred m

For completeness, an alternative predecessor definition is as follows (TODO: explain):

pred' = λn f x. n (λg h. h (g f)) (λu. x) (λu. u)

We can check if a variable is zero:

is-zero = λn.n (λx. false) true

We can define ≤

leq = λm n. is-zero (minus m n)

And we can define equality:

equal = λm n. and (leq m n) (leq n m)

Recursion

We have seen that we can define booleans, together with a conditional, and numbers,
together with arithmetic operations in pure lambda calculus. However, to reach full
Turing power, we lack one important ingredient: the ability to loop. To loop in a
functional setting, we need the little brother of looping: self-reference.

To see that we can loop, let us look at a term, for which β-reduction never terminates in
a normal form. This interesting term, called Ω, is defined as follows:

Ω = (λx. x x) (λx. x x)

We see that we have an abstraction which applies its argument to itself and which is
applied to itself. How does reduction proceed?

(λx. x x) (λx. x x) --> (x x)[x := (λx. x x)]
= (λx. x x) (λx. x x) --> (x x)[x := (λx. x x)]
= (λx. x x) (λx. x x) --> (x x)[x := (λx. x x)]
...
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Immediately after the first reduction step, we are back where we started! Well, we see
we can loop forever (diverge), but how is this useful?

In a programming language like OCaml, we are used to defining recursive functions
which refer to themselves inside of their body:

let rec fact = fun n ->
if n = 0 then 1 else n * fact (n - 1)

How do we achieve this in lambda? While we have been freely using equations to define
names for lambda expressions, these were just meta-definitions of names. That is, when
we write

fact = λn. if-true (is-zero n) one (mult n (?fact? (pred n)))

we rely on our meta-language and our common understanding of it to replace any
occurrence of ?fact? with the right-hand side of the above equation, as many times as
needed. But this is not beta-reduction, that is we are not defining a recursive function
as an object in lambda calculus. To get there, we can think of a recursive definition as
follows: “Assuming we have a function to call in the recursive case, we can complete
the definition”. In Haskell or OCaml, we can simply assume that we already have the
function that we are defining. But what is really going on here, is that we can abstract
the recursive call as an argument – which corresponds to saying “assuming we already
have a function to call in the recursive case”:

fact = λf. λn. if-true (is-zero n) one (mult n (f (pred n)))

Now factorial does not refer to itself anymore, we just need to give it a function to call
in the else branch. Easy:

fact = (λf. λn. if-true (is-zero n) one (mult n (f (pred n)))) (λn. if-true (is-zero n) one (mult n (f (pred n))))

Wait, but now what about f in the second case? Ah, no problem:

fact = (λf. λn. if-true (is-zero n) one (mult n (f (pred n))))
((λf. λn. if-true (is-zero n) one (mult n (f (pred n))))
(λn. if-true (is-zero n) one (mult n (f (pred n)))))
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This apparently won’t work. . . unless we have a way of supplying an argument for f as
many times as it’s needed. That is, a way to allow the function reference itself whenever
it needs to. This is where fixpoint combinators come in.

In math, a fixed point of a function f is an input for which the function returns the input
itself:

f(x) = x

If the above holds, we say that x is a fixed point of f . A fixpoint combinator (in general
called fix) is an operation that computes the fixed point of a function. That is, it is a
function for which the following equation holds:

fix f = f (fix f)

This equation just spells out that when a function is applied to its fixpoint, the fixpoint
shall be returned. Let’s use the above equation on itself, by replacing occurrences of fix
f with the right-hand side:

fix f = f (fix f)
= f (f (fix f))
= f (f (f (fix f)))
= ...

Now glance above: “If only we had a way of supplying an argument for f as many times
as it’s needed.” Seems we are onto something. Let’s replace f with our factorial:

fact = λf. λn. if-true (is-zero n) one (mult n (f (pred n)))

fix fact
= fact (fix fact)
= (λf. λn. if-true (is-zero n) one (mult n (f (pred n)))) (fix fact)
--> (λn. if-true (is-zero n) one (mult n ((fix fact) (pred n))))

This looks promising. The problem? We haven’t defined what fix is, we are just abusing
our meta-notation again. In fact, there is more than one possible definition of fix. The
simplest one is the Y combinator:

Y = λf. (λx. f (x x)) (λx. f (x x))

Notice how the structure is very similar to Ω above. We should check if it is a fixpoint
combinator, that is, if it satisfies the fixpoint equation:
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Y g = (λf. (λx. f (x x)) (λx. f (x x))) g
= (λx. g (x x)) (λx. g (x x)))
= g ((λx. g (x x)) (λx. g (x x)))
= g ((λf. ((λx. f (x x)) (λx. f (x x)))) g)
= g (Y g)

We have ourselves a fixpoint combinator. Let us try to use it to define our factorial
function:

fact0 = (λf. λn. if-true (is-zero n) one (mult n (f (pred n))))
fact = Y fact0

What happens when we try to apply fact to a numeral?

fact three
= Y fact0 three
= (λf. (λx. f (x x)) (λx. f (x x))) fact0 three
--> (λx. fact0 (x x)) (λx. fact0 (x x)) three
--> fact0 ((λx. fact0 (x x)) (λx. fact0 (x x))) three
= fact0 (Y fact0) three
--> (λn. if-true (is-zero n) one (mult n ((Y fact0) (pred n)))) three
--> if-true (is-zero three) one (mult three ((Y fact0) (pred three)))
--> ...
--> mult three ((Y fact0) (pred three))
= mult three (fact0 (Y fact0) (pred three))
--> ...
--> mult three (fact0 (Y fact0) (if-true (is-zero (pred three)) one (mult (pred three) ((Y fact0) (pred (pred three)))))
...
-->

However, the Y combinator is not universally applicable under any reduction strategy.
Consider what happens with the Y combinator, if we apply the CBV strategy.

Y g = (λf. (λx. f (x x)) (λx. f (x x))) g
--> (λx. g (x x)) (λx. g (x x))
--> g ((λx. g (x x)) (λx. g (x x)))
--> g (g (λx. g (x x)) (λx. g (x x)))
--> g (g (g (λx. g (x x)) (λx. g (x x))))
--> ...

For CBV, we need the Z combinator:

λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))
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Let bindings

The last useful notation to introduce are let-bindings. We have already implemented
them as part of our arithmetic expressions language – both as a substitution-based
and environment-based evaluator. Let bindings can be introduced to pure lambda-
calculus as syntactic sugar – a construct that is defined by translation to a combination
of other constructs in the language. Introducing a let-binging corresponds to creating a
λ-abstraction and immediately applying it to the bound expression:

let x = e1 in e2 ≡ (λx. e2) e1

We have to define let as syntactic sugar – we cannot write it as a function, the way we
did for if-then, add, etc. Why is that the case?

We can also define a recursive version of let – called let rec in OCaml, letrec in
Scheme:

let rec f = e1 in e2 ≡ let f = fix (λf. e1) in e2
≡ (λf. e2) (fix (λf. e1))

Where fix is an appropriate fixpoint combinator (e.g., Y under CBN, Z under CBV and
CBN).

Most languages also allow specifying function arguments to the left-hand side of the
equal sign:

let f x y z = e1 in e2
let rec f x y z = e1 in e2

(define (f x y z) e1)

These can be translated as:

let f x y z ... = e1 in e2 ≡ let f = λx y z. e1 in e2
≡ (λf. e2) (λx y z. e1)
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