
Lecture 20: Types and Type Systems
CS4400 Programming Languages

Introduction

This part is partially based on notes by Norman Ramsey and on the book Types
and Programming Languages by Benjamin Pierce

What is a type?

• In a Haskell-like language (simplified by ignoring type classes)

1 + 5 :: Integer

"hello " ++ "world" :: String

n > 10 :: Bool -- if n :: Integer

if n > 10 then "Yes" else "No" :: String -- if n :: Integer

\x -> x + 10 :: Integer -> Integer

• Types classify program phrases according to the kinds of values they compute

• They are predictions about values

• Static approximation of runtime behavior – conservative

Why types?

• Static analysis: detect (potential) runtime errors before code is run:

1 + True

10 "hello" -- application of the number 10 to a string?
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– E.g., Python is happy to accept the following function definition:

def f(x):
if x < 10:
x(x, 10)

else:
"Hello " + x

What happens at runtime, when the function is called as f(4)?

• Enforcing access policy (private/protected/public methods)

• Guiding implementation (type-based programming)

• Documentation: types tell us a lot about functions and provide a documentation
that is repeatedly checked by the compiler (unlike comments)

• Help compilers choose (more/most) efficient runtime value representations and
operations

• Maintenance: if we change a function’s type, the type checker will direct us to all
use sites that need adjusting

What is a type system?

A tractable syntactic method for proving the absence of certain program
behavior.

• They are studied on their own as a branch of mathematics/logic: type theory

• Original motivation: avoiding Russell’s paradox

• Type systems are generally conservative:

1 + (if True then 10 else "hello")

would behave OK at runtime, but is, nevertheless, typically rejected by a static
type checker (e.g., Haskell’s)

What kind of errors are typically not detected by type systems?

• Division by zero

• Selecting the head of an empty list

• Out-of-bounds array access

• Non-termination

Consideration: a program which mostly runs numeric computations will benefit from a
strong static type system less than a program which transforms various data structures

Terminology: type systems
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Dynamic types are checked at runtime, typically when operations are performed on
values

Static types are checked before program is (compiled and) run

What is a type safe language?

• Can a dynamically typed language be safe?

• Is a statically typed language automatically type safe?

Dynamic:

• Consider Python

>>> 1 + "hello"
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'int' and 'str'

>>> "hello" + 1
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: can only concatenate str (not "int") to str

• Rejects applying + to incompatible arguments – protects from behavior that is
incompatible with the abstractions of integers and strings

Static:

• Consider C:

1 int array[] = {1, 2, 3, 4};
2 char string[] = "Hello, world!";
3

4 printf("%d %d %d %d\n", array[0], array[1], array[2], array[3]);
5

6 array + 2;
7 string + 3;

Here the compiler will merely complain about unused values on lines 6 and 7. But
what does the expression array + 2 mean? Of course, a C programmer knows,
that arrays are just pointers, and so adding two to a pointer merely shifts where
the pointer points to. But is it complatible with the abstraction of array?

So, again: what is a type safe-language?

A (type-)safe language is one that protects its own abstractions.
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This means that a safe language won’t allow a programmer to apply operations which
are not “sensible” for the given arguments, potentially leading to unexpected/undefined
behavior at runtime.

Specifying Type Systems

Abstract syntax + Types + Typing rules (+ auxiliary operations)

• A type system is typically specified as a set of rules which allow assigning types to
abstract syntax trees – similarly to how evaluators assign values to abstract syntax
trees

• The goal: determine what type an expression (program phrase) has – if it has one

• A type judgement – mathematically:

` e : t

Read: “e has type t”

• A “type judgement” – in Haskell

typeOf e = t

• Typing rules tell us how to arrive at the above conclusion for a particular expression

• This is based on syntax – in other words type checking (and typing rules) are,
typically, syntax-directed

• On paper, typing rules are usually expressed as inference rules:

1st premise 2nd premise 3rd premise ...
conclusion

• Such a rule can be read as “If 1st premise AND 2nd premise AND 3rd premise . . .
are all true, then the conclusion is also true”

• If we can show that the premises hold, the rule allows us to conclude that is below
the line

• If a rule has no premises, it is an axiom

• Here are some examples, written mathematically

` 3 : Integer

“The type of the value 3 is Integer”
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n is an integer value
` n : Integer

“If n is an integer value, then the type of n is Integer”

` e1 : Integer ` e2 : Integer
` e1 + e2 : Integer

“If the type of e1 is Integer and the type of e2 is Integer, then the type of
expression e1 + e2 is also Integer”

• We can (and will) view these inference rules as a fancy way of writing Haskell
functions

• Let us first define datatypes for expressions (for now only integer numbers and
addition) and types (only integers)

data Expr = Num Integer
| Add Expr Expr

data Type = TyInt

• The above two rules as a Haskell type checker:

typeOf :: Expr -> Maybe Type -- an expression might not have a type
typeOf (Num n) = return TyInt
typeOf (Add e1 e2) =
do TyInt <- typeOf e1

TyInt <- typeOf e2
return TyInt

• Note that the return type of typeOf is Maybe Type

– This is to allow for the possibility that an expression might not have a type
(although in this trivial language, all expressions do)

• We use the do notation (together with return) to simplify the definition. The
above is equivalent to:

typeOf :: Expr -> Maybe Type -- an expression might not have a type
typeOf (Num n) = Just TyInt
typeOf (Add e1 e2) =
case typeOf e1 of

Just TyInt -> case typeOf e2 of
Just TyInt -> Just TyInt
_ -> Nothing

_ -> Nothing
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• To make the connection a little more explicit, we will write inference rules as a
mix of Haskell and math:

------------------
|- Num n : TyInt

|- e1 : TyInt |- e2 : TyInt
--------------------------------
|- Add e1 e2 : TyInt

• More typing rules (we add a few new expression shapes + a new type for
booleans):

data Expr = ...
| Bool Bool
| And Expr Expr
| Not Expr
| Leq Expr
| If Expr Expr Expr

data Type = ...
| TyBool

--------------------
|- Bool b : TyBool

|- e1 : TyBool |- e2 : TyBool
---------------------------------
|- And e1 e2 : TyBool

|- e : TyBool
-------------------
|- Not e : TyBool

|- e1 : TyInt |- e2 : TyInt
-------------------------------
|- Leq e1 e2 : TyBool

|- e1 : TyBool |- e2 : t |- e3 : t
----------------------------------------
|- If e1 e2 e3 : t
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How do we apply these rules?

• We build derivations!

• But what are derivations?

• A derivation is a (proof) tree built by consistently replacing variables in inference
rules by concrete terms

• At the bottom of the tree is the typing judgment we are trying to show

Examples:

1. A numeric literal

------------------
|- Num 3 : TyInt

Nothing else needed here, since the rule is an axiom and doesn’t have any condi-
tions (premises)

2. Addition of two numbers

|- Num 3 : TyInt |- Num 3 : TyInt
-------------------------------------
|- Add (Num 3) (Num 4) : TyInt

3. Boolean expression:

|- Bool True : TyBool |- Bool False : TyBool |- Bool True : TyBool
----------------------------- -----------------------------------------------
|- Not (Bool True) : TyBool |- And (Bool False) (Bool True) : TyBool
-------------------------------------------------------------------------------
|- And (Not (Bool True)) (And (Bool False) (Bool True)) : TyBool

Prettier:

` Bool True : TyBool
` Not (Bool True) : TyBool

` Bool False : TyBool ` Bool True : TyBool
` And (Bool False) (Bool True) : TyBool

` And (Not (Bool True )) (And (Bool False) (Bool True)) : TyBool

4. Conditional involving booleans and integers
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|- Num 3 : TyInt Num 4 : TyInt
----------------------------------
|- Leq (Num 3) (Num 4) : TyBool
--------------------------------------
|- Not (Leq (Num 3) (Num4)) : TyBool |- Num 3 : TyInt |- Num 5 : TyInt
-----------------------------------------------------------------------------
|- If (Not (Leq (Num 3) (Num 4))) (Num 3) (Num 5)

5. A failing one:

|- Bool True : TyBool |- Num 3 : TyInt
-----------------------------------------
|- Add (Bool True) (Num 3) : ?

We have no rule to apply here. We would need Num 3 to have type TyBool and
there is no rule that allows us to derive this. Hence, the above expression cannot
be type-checked.

Type-checking Involving Variables

Syntax extensions:

data Expr = ...
| Var Variable
| Let Variable Expr Expr

How do we deal with variables?

• We need to keep track of types assigned to variables

• Idea: Like for an (environment-based) evaluator for expressions, use an environ-
ment

• The environment maps variables to types

type TyEnv = Map Variable Type

Example rules:
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t <- get x tenv
-------------------
tenv |- Var x : t

tenv |- e1 : t1 add x t1 env |- e2 : t2
--------------------------------------------

tenv |- Let x e1 e2 : t2

In Haskell:

typeOf :: TyEnv -> Expr -> Maybe Type
...
typeOf tenv (Add e1 e2) = -- previous cases need to be refactored to use tenv
do TyInt <- typeOf tenv e1

TyInt <- typeOf tenv e2
return TyInt

...
typeOf tenv (Var x) = get tenv x -- NEW: variable lookup
typeOf tenv (Let x e1 e2) = -- NEW: let-binding

do t1 <- typeOf tenv e1 -- get type of e1
t2 <- typeOf (add x t1 tenv) e2 -- get the type of e2, assuming x : t1
return t2
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