
Lecture 21: Simply-Typed Lambda
Calculus

CS4400 Programming Languages

Syntax extensions:

• Note that abstractions need to specify the type of the bound variable – there is no
way for the type-checker to guess it (at this stage)

data Expr = ...
| Lam Variable Type Expr
| App Expr Expr

data Type = ...
| TyArrow Type Type

TyArrow:

• The new type constructor, TyArrow, represents a function type:

TyArrow TyInt TyBool is the type a function that takes an integer (TyInt) and
returns a boolean (TyBool). In Haskell (also in some other languages and in type
theory), this is written Integer -> Bool

TyArrow (TyArrow TyInt TyBool) (TyArrow TyInt TyBool) corresponds to
(Integer -> Bool) -> (Integer -> Bool), that is, the type of a function that
takes a function from integers to booleans and returns a function from integers to
booleans.

Due to currying, we normally understand this as a function that
takes a function from integers to booleans, then an integer and
returns a boolean. Note that this also means that the arrow -> is
right-associative and the above Haskell type can be equivalently written
as (Integer -> Bool) -> Integer -> Bool. Also note, that this is
opposite of how application associates, which is to the left.

1



Note on associativity:

Function type – RIGHT: t1 -> t2 -> t3 -> t4 is the same as
t1 -> (t2 -> t3 -> t3) is the same as t1 -> (t2 -> (t3 -> t4))

Function application – LEFT: f a b c is the same as (f a) b c is the same
as ((f a) b) c

Rules

add x t1 tenv |- e : t2
------------------------------------
tenv |- Lam x t1 e : TyArrow t1 t2

tenv |- e1 : TyArrow t2 t1 e2 : t2' t2 == t2'
----------------------------------------------------

tenv |- App e1 e2 : t1

The fixpoint operator:

• No fixpoint combinator (e.g., Y or Z) can be type-checked in STLC, so it has to be
added as a primitive operation

data Expr = ...
| Fix Expr

tenv |- e : TyArrow t t' t == t'
------------------------------------

tenv |- Fix e : t

2


