
CS 4500
Software Development

[Code, pt 1]

Ferdinand Vesely
(partially based on Clean Code by Robert C. Martin)

September 17, 2019

F. Vesely CS 4500 September 17, 2019 1 / 29



Lab / Log Book

• Get a Lab Book
• Small notebook
• Notes about

Ï assignment and project work
Ï group/pair work
Ï meetings

F. Vesely CS 4500 September 17, 2019 2 / 29



Lab / Log Book

• Make notes about group
• 4 types of pages:

1. Group info page: nickname, names, cell phones, emails or social network
handles

2. Meeting notes page
3. Weekly project cover page: title + time estimate + notes
4. Weekly project conclusion page: time needed, re�ection

F. Vesely CS 4500 September 17, 2019 3 / 29



Meeting Page

1. Date/time
2. Location
3. Members present
4. Goal
5. Notes
6. Duration
7. Next meeting

F. Vesely CS 4500 September 17, 2019 4 / 29



Meetings

If somebody doesn’t show up:
• write down steps taken to reach them
• if they excused themselves, write down reasons

F. Vesely CS 4500 September 17, 2019 5 / 29



About Code



Good Code vs. Bad Code

F. Vesely CS 4500 September 17, 2019 7 / 29



Code

Can we get rid of code?
In a sense. . .

• Represents the details of the requirements
• Specifying requirements in such detail that a machine can execute
them = programming

• Such a speci�cation is code
• Good code matters and will matter

F. Vesely CS 4500 September 17, 2019 8 / 29



What often happens

• Write a promising prototype

• Turn into product, roll it out
• No time to think about code quality
• Product is succesfull→ feature requests

Ï Also: bugs get discovered more frequently

• Pile new code on top of old one
• Code becomes unmaintainable
• Longer and longer release cycles
• New bugs introduced, old bugs not �xed
• Users abandon product

F. Vesely CS 4500 September 17, 2019 9 / 29



What often happens

• Write a promising prototype
• Turn into product, roll it out

• No time to think about code quality
• Product is succesfull→ feature requests

Ï Also: bugs get discovered more frequently

• Pile new code on top of old one
• Code becomes unmaintainable
• Longer and longer release cycles
• New bugs introduced, old bugs not �xed
• Users abandon product

F. Vesely CS 4500 September 17, 2019 9 / 29



What often happens

• Write a promising prototype
• Turn into product, roll it out
• No time to think about code quality

• Product is succesfull→ feature requests

Ï Also: bugs get discovered more frequently

• Pile new code on top of old one
• Code becomes unmaintainable
• Longer and longer release cycles
• New bugs introduced, old bugs not �xed
• Users abandon product

F. Vesely CS 4500 September 17, 2019 9 / 29



What often happens

• Write a promising prototype
• Turn into product, roll it out
• No time to think about code quality
• Product is succesfull→ feature requests

Ï Also: bugs get discovered more frequently
• Pile new code on top of old one
• Code becomes unmaintainable
• Longer and longer release cycles
• New bugs introduced, old bugs not �xed
• Users abandon product

F. Vesely CS 4500 September 17, 2019 9 / 29



What often happens

• Write a promising prototype
• Turn into product, roll it out
• No time to think about code quality
• Product is succesfull→ feature requests

Ï Also: bugs get discovered more frequently

• Pile new code on top of old one
• Code becomes unmaintainable
• Longer and longer release cycles
• New bugs introduced, old bugs not �xed
• Users abandon product

F. Vesely CS 4500 September 17, 2019 9 / 29



What often happens

• Write a promising prototype
• Turn into product, roll it out
• No time to think about code quality
• Product is succesfull→ feature requests

Ï Also: bugs get discovered more frequently
• Pile new code on top of old one

• Code becomes unmaintainable
• Longer and longer release cycles
• New bugs introduced, old bugs not �xed
• Users abandon product

F. Vesely CS 4500 September 17, 2019 9 / 29



What often happens

• Write a promising prototype
• Turn into product, roll it out
• No time to think about code quality
• Product is succesfull→ feature requests

Ï Also: bugs get discovered more frequently
• Pile new code on top of old one
• Code becomes unmaintainable

• Longer and longer release cycles
• New bugs introduced, old bugs not �xed
• Users abandon product

F. Vesely CS 4500 September 17, 2019 9 / 29



What often happens

• Write a promising prototype
• Turn into product, roll it out
• No time to think about code quality
• Product is succesfull→ feature requests

Ï Also: bugs get discovered more frequently
• Pile new code on top of old one
• Code becomes unmaintainable
• Longer and longer release cycles

• New bugs introduced, old bugs not �xed
• Users abandon product

F. Vesely CS 4500 September 17, 2019 9 / 29



What often happens

• Write a promising prototype
• Turn into product, roll it out
• No time to think about code quality
• Product is succesfull→ feature requests

Ï Also: bugs get discovered more frequently
• Pile new code on top of old one
• Code becomes unmaintainable
• Longer and longer release cycles
• New bugs introduced, old bugs not �xed

• Users abandon product

F. Vesely CS 4500 September 17, 2019 9 / 29



What often happens

• Write a promising prototype
• Turn into product, roll it out
• No time to think about code quality
• Product is succesfull→ feature requests

Ï Also: bugs get discovered more frequently
• Pile new code on top of old one
• Code becomes unmaintainable
• Longer and longer release cycles
• New bugs introduced, old bugs not �xed
• Users abandon product

F. Vesely CS 4500 September 17, 2019 9 / 29



What is good code?

• Clean code

You know you are working on clean code when each routine you
read turns out to be pretty much what you expected. (Ward Cun-
ningham)

F. Vesely CS 4500 September 17, 2019 10 / 29



What is good code?

• Reads like well-written prose
• Never obscures designer’s intent
• Clear abstractions & straightforward lines of control
• Easy for other people to read and enhance. Literate

F. Vesely CS 4500 September 17, 2019 11 / 29



Good Code

• Ratio of reading vs. writing code is high
• Making it easy to read makes it easier to write

F. Vesely CS 4500 September 17, 2019 12 / 29



Names



Names

• In programming: most of what we read or write are names:
Ï variables
Ï methods/functions
Ï classes
Ï packages
Ï constants
Ï macros
Ï . . .

• Names are everywhere!
• We should be motivated to choose them well
• Principles

F. Vesely CS 4500 September 17, 2019 14 / 29



Indicate Intent

• A name should answer all big questions
• Shouldn’t need a comment
• Comment doesn’t travel with the variable name
• Even though tools support fast lookups

F. Vesely CS 4500 September 17, 2019 15 / 29



Indicate Intent
• Consider:

int d; // elapsed time in days

• Fine . . . but several lines down, something like:

d = Scanner.nextInt();

if (d > dMax) {
...

}
else {
...

}

F. Vesely CS 4500 September 17, 2019 16 / 29



Indicate Intent

• d on its own tells me nothing
• How about:

int elapsedTimeInDays;
int daysSinceCreation;
int daysSinceModification;
int fileAgeInDays;

F. Vesely CS 4500 September 17, 2019 17 / 29



Indicate Intent

public List<int[]> getThem() {
List<int[]> list1 = new ArrayList<int[]>();

for (int[] x : theList)
if (x[0] == 4)

list1.add(x);

return list1;
}

• Not explicit

F. Vesely CS 4500 September 17, 2019 18 / 29



Indicate Intent

public List<int[]> getFlaggedCells() {
List<int[]> flaggedCells = new ArrayList<int[]>();

for (int[] cell : gameBoard)
if (cell[STATUS_VALUE] == FLAGGED)
flaggedCells.add(cell);

return flaggedCells;
}

F. Vesely CS 4500 September 17, 2019 19 / 29



Indicate Intent

• Even better: name types!

public List<Cell> getFlaggedCells() {
List<Cell> flaggedCells = new ArrayList<Cell>();

for (Cell cell : gameBoard)
if (cell.isFlagged())

flaggedCells.add(cell);

return flaggedCells;
}

F. Vesely CS 4500 September 17, 2019 20 / 29



Meaningful Distinctions
For the purpose of distinguishing:

• Avoid number series

public static void copy(char a1[], char a2[]) {
for (int i = 0; i < a1.length; i++)
a2[i] = a1[i];

}

vs.

public static void copy(char source[], char destination[]) {
for (int i = 0; i < source.length; i++)

destination[i] = source[i];
}

F. Vesely CS 4500 September 17, 2019 21 / 29



Meaningful Distinctions
For the purpose of distinguishing:

• Avoid number series

public static void copy(char a1[], char a2[]) {
for (int i = 0; i < a1.length; i++)
a2[i] = a1[i];

}

vs.

public static void copy(char source[], char destination[]) {
for (int i = 0; i < source.length; i++)

destination[i] = source[i];
}

F. Vesely CS 4500 September 17, 2019 21 / 29



Meaningful Distinctions

For the purpose of distinguishing:
• Avoid “noise words”, such as info, data:

account
accountInfo
accountData

• What is the di�erence?

F. Vesely CS 4500 September 17, 2019 22 / 29



Choose Names You Can Pronounce
• If you can’t pronounce it, you can’t discuss it

class DtaRcrd102 {
private Date genymdhms;
private Date modymdhms;
private final String pszqint = "102"; /* ... */

}

vs.

class Customer {
private Date generationTimestamp;
private Date modificationTimestamp;
private final String recordId = "102"; /* ... */

}

F. Vesely CS 4500 September 17, 2019 23 / 29



Choose Names You Can Pronounce
• If you can’t pronounce it, you can’t discuss it

class DtaRcrd102 {
private Date genymdhms;
private Date modymdhms;
private final String pszqint = "102"; /* ... */

}

vs.

class Customer {
private Date generationTimestamp;
private Date modificationTimestamp;
private final String recordId = "102"; /* ... */

}
F. Vesely CS 4500 September 17, 2019 23 / 29



Choose Names You Can Search

• Constants – usually hardly searchable
Ï e.g., 5 vs. WORK_DAYS_PER_WEEK

• Short names – hardly searchable: e, a, . . .
• Single letter – Only very local variables, e.g., i, j, k in for-loops

F. Vesely CS 4500 September 17, 2019 24 / 29



Choose Names You Can Search

for (int j=0; j<34; j++) {
s += (t[j]*4)/5;

}

vs.

int realDaysPerIdealDay = 4;
const int WORK_DAYS_PER_WEEK = 5;
int sum = 0;
for (int j=0; j < NUMBER_OF_TASKS; j++) {

int realTaskDays = taskEstimate[j] * realDaysPerIdealDay;
int realTaskWeeks = (realTaskDays / WORK_DAYS_PER_WEEK);
sum += realTaskWeeks;

}

F. Vesely CS 4500 September 17, 2019 25 / 29



Choose Names You Can Search

for (int j=0; j<34; j++) {
s += (t[j]*4)/5;

}

vs.

int realDaysPerIdealDay = 4;
const int WORK_DAYS_PER_WEEK = 5;
int sum = 0;
for (int j=0; j < NUMBER_OF_TASKS; j++) {

int realTaskDays = taskEstimate[j] * realDaysPerIdealDay;
int realTaskWeeks = (realTaskDays / WORK_DAYS_PER_WEEK);
sum += realTaskWeeks;

}

F. Vesely CS 4500 September 17, 2019 25 / 29



Solution vs. Problem Domain Names

• Use CS terms (“solution domain”) when it makes sense:
Ï names of algorithms, patterns, standard data structures, etc.
Ï communicating to programmers
Ï e.g., JobQueue, calculateChecksum

• Use problem domain terms when dealing with problem domain
concepts

Ï describing problem domain

F. Vesely CS 4500 September 17, 2019 26 / 29



Meaningful Context

• Provide context to ambiguous names
• E.g., what does state represent?
• Clearer when seen in context:
street, houseNumber, city, state, zipCode

• Provide context in name: addrStreet, addrCity, addrState, . . .
• Provide context by bundling: class Address { ...

F. Vesely CS 4500 September 17, 2019 27 / 29



Summary

• We read code most of the time
• Good code reads well – it �ows
• Minimizes distractions
• Names should:

Ï indicate intent
Ï use meaningful distinctions
Ï be pronounceable
Ï be searchable
Ï relate to the appropriate domain (problem vs. solution)
Ï give enough context

F. Vesely CS 4500 September 17, 2019 28 / 29



F. Vesely CS 4500 September 17, 2019 29 / 29


	About Code
	Names

