
CS 4500
Software Development

Software Architectures

Ferdinand Vesely

September 27, 2019

F. Vesely CS 4500 September 27, 2019 1 / 20



Software Architectures



Software Architecture

• Describes the overall structure of the system
• Manner in which data and procedural components collaborate
• Essential tool for complexity management

F. Vesely CS 4500 September 27, 2019 3 / 20



Software Architecture

Two levels of abstraction:
1. Architecture in the small

Ï How an individual program is decomposed into components

2. Architecture in the large
Ï Organization of large / distributed systems
Ï Composed of several programs, other systems

F. Vesely CS 4500 September 27, 2019 4 / 20



Architectural Patterns

• Stylized, abstract description of good practice
• Tried and tested in di�erent systems and environments
• System organization successful in previous systems

F. Vesely CS 4500 September 27, 2019 5 / 20



Layered Architecture

• Also: multitier architecture
• Layers with related functionality
• Layer provides services to the layer above it
• Lowest-level layers represent core services

Ï likely to be used throughout the system.

F. Vesely CS 4500 September 27, 2019 6 / 20



Layered Architecture
Generic Example

Presentation Layer

Business Layer

Persistence Layer

Database Layer

F. Vesely CS 4500 September 27, 2019 7 / 20



Layered Architecture

• Separation and independence – fundamental
• Allow changes to be localized
• Supports incremental development of systems
• Portability: replace layers – as long as interface stable
• Interface change – only adjacent layer a�ected

F. Vesely CS 4500 September 27, 2019 8 / 20



Layered Architecture

• Clean separation between layers – often di�cult
• Performance can be a problem

Ï multiple levels of interpretation of a service request

F. Vesely CS 4500 September 27, 2019 9 / 20



Repository Architecture

• All data: managed in a central repository
• Accessible to all system components
• No direct interaction between components
• E�cient for sharing large amounts of data among components
• Actions can be triggered by components
• Data-driven systems – action triggered by data update

F. Vesely CS 4500 September 27, 2019 10 / 20



Repository Architecture
Example: IDE

Project RepositoryDesign editor

Build system Java editor

Report
generator

Design
validator

Scala editor

F. Vesely CS 4500 September 27, 2019 11 / 20



Repository Architecture

Pros:
• Components can be independent

Ï don’t need to know about other components
• Changes made by one component – propagated to all components
• Data can be managed consistently – centralization

Cons:
• Repository = single point of failure
• Problems in repository a�ect the whole system
• Possible ine�ciencies in organizing all communication through
repository

• Distributing the repository – problematic

F. Vesely CS 4500 September 27, 2019 12 / 20



Client-Server Architecture

Major components:
1. Server(s)

Ï O�er services to other components.
Ï Examples: print server, �le server, compile server

2. Client(s)
Ï Connect to server to use service
Ï Normally: several instances of a client program on di�erent computers

3. Network
Ï Allows clients to access services
Ï Most client–server systems: implemented as distributed systems

F. Vesely CS 4500 September 27, 2019 13 / 20



Client-Server Architecture

X Server

X client
(Firefox)

X client
(Evince)

X client
(Xterm)

Local clients

N
etw

ork

Can be distributed but also running on a single machine

F. Vesely CS 4500 September 27, 2019 14 / 20



Client-Server Architecture

Pros:
• Servers can be distributed across a network
• General functionality (e.g., printing) – available to all clients from a
single server

Cons:
• Each service: single point of failure

Ï DoS or server failure
• Performance may be unpredictable

Ï depends on the network AND the system
• Possible management problems –

F. Vesely CS 4500 September 27, 2019 15 / 20



Pipe and Filter

Data processing in a system:
• Each processing component (�lter): discrete and carries out one
type of data transformation

• Data �ows (as in a pipe) from one component to another for
processing

• Commonly used for batch and transaction-based data processing
applications

• Inputs processed in separate stages to generate related outputs
• Can be sequential, concurrent, coroutines. . .

F. Vesely CS 4500 September 27, 2019 16 / 20



Pipe and Filter
Example: Compiler

Lexer Parser Type-
checker Optimizer Code

generator Assembler Linker

F. Vesely CS 4500 September 27, 2019 17 / 20



Pipe and Filter
Example: Business Batch Processing

Invoices Payments

Receipts

Reminders

Read issued
invoices

Read issued
invoices

Issue receipts

Find payments
due

Issue payment
reminder

F. Vesely CS 4500 September 27, 2019 18 / 20



Pipe and Filter

Pros:
• Easy to understand
• Supports transformation reuse
• Work�ow style matches structure of business processes
• Evolution by adding transformations straightforward
• Can be implemented as sequential or concurrent system

Cons:
• Bu�ering: over�ows
• Deadlocks
• Pipes allowing only one data type – �lters need to do parsing –
slowdowns

F. Vesely CS 4500 September 27, 2019 19 / 20



Summary

• Software architecture ≈ description of how a software system is
organized

• Architectural patterns – means of reusing knowledge about generic
system architectures

• Layered Architecture, Repository, Client-server, Pipe and Filter –
common patterns

F. Vesely CS 4500 September 27, 2019 20 / 20


	Software Architectures

