CS 4500
Software Development

Unit Testing

Ferdinand Vesely

October 4, 2019

The Big Picture

Software Verification & Validation

* A wider process - various activities

a)

Verification & Validation

. . Formal . . .
A 4

F. Vesely CS 4500 October 4, 2019 3/33

Software Verification & Validation

Goal

Ensure that the system meets expectations.

F. Vesely CS 4500 October 4, 2019 4133

Software Verification & Validation

Validation
Are we building the right product?

* Does the system deliver functionality expected by stakeholders?
* E.g., acceptance testing

Verification
Are we building the product right?

* Does the system meet its specification?
* Formal verification, testing

Verification: Approaches

Formal Verification

With respect to a (formal) specification:
1. Model checking

* enumerate all states
* show that each state satisfies desired properties

2. Deductive verification
* specification + implementation = proof obligations

Caveat: How do we know the spec is adequate?

October 4, 2019 6/33

F. Vesely

Verification: Testing

Show program behaves as intended
Discover defects

Execute program with artificial data
Check the results: Errors? Anomalies?

F. Vesely CS 4500 October 4, 2019 7133

Limitations

“Testing can only show the presence of er-
rors, not their absence”

- Dijkstra

F. Vesely CS 4500 October 4, 2019 8/33

Stages

1. Development Testing

» system is tested during development to discover bugs and defects
2. Release Testing

» complete version of the system before release

>~ separate team

3. User Testing

» Alpha testing
» Beta testing
» Acceptance testing

F. Vesely CS 4500 October 4, 2019 9/33

Development Testing

Levels

g

* individual program * gradually integrate * test the system as a
units components whole

e functionality of * test as each new * closest to user’s
routines and component experience of the
components integrated system

F. Vesely CS 4500 October 4, 2019 1/33

Unit Testing

e Test individual units in isolation

 Defect testing process:

» Discover faults or defects
» Where behavior incorrect / not conforming to spec
» Success: bug discovered

e Units:

» Individual functions / methods
» Modules / object classes

F. Vesely CS 4500 October 4, 2019 12/33

Module / Class Testing

Complete coverage:
* Test all operations associate with a module / object
* Set / interrogate all object attributes

* Exercise all possible states
» simulate all events which cause a state change

Inheritance
* Information is not localized

* Not enough to test in parent class and assume operation works in
subclasses

Manual Testing?

* Possible to test manually...
e Usually not necessary at unit level
* Slows down development

J’
—
X]

F. Vesely CS 4500 October 4, 2019 14/33

Unit Test Automation

* Whenever possible: automate
e Tests run and checked without manual intervention
* Automation frameworks, e.g., the xUnit family

F. Vesely CS 4500 October 4, 2019 15/33

Unit Test Setup

Unit under test

A

Driver

Stub / mock

Stub / mock

F. Vesely CS 4500

\ 4
Results

Test cases

October 4, 2019

16 /33

Test Case Execution

1. Setup
» set up environment / context for the test

2. Test

» invoke the unit under test
» check assertion on the result

3. Teardown
» tear down the environment

F. Vesely CS 4500 October 4, 2019 17133

Test Case Execution

Stack<int> testStack;

Qéid testNewStackEmpty () {
testStack = new Stack<int>(); // setup
assertTrue(testStack.empty()); // test

delete testStack; // teardown
}

void tests() {
testNewStackEmpty();
testPushThenPopEmpty () ;

F. Vesely October 4, 2019 18/33

xUnit

unit test automation frameworks
simplifies administration of tests

origin: Smalltalk

JUnit, unittest (Python), cppunit, OUnit, ...

F. Vesely CS 4500 October 4, 2019 19/33

xUnit

Concepts:

1. Fixture / context
» provides environment for each test
» set up and teardown
2. Test case
>~ executes a scenario
» checks assertions

3. Test suite

» collections of test cases with a common fixture
» order of test cases should not matter

4. Runner (driver)
> run test suites, report results

F. Vesely CS 4500 October 4, 2019 20/33

Mock Objects

class EmptyMockStack extends Stack<int> {
public boolean empty() {
log.println("empty()");
return true;

}

public void push(int elt) {
log.println("push(" + elt +")");
}

Choosing Test Cases

* Exhaustive tests for routines - usually not feasible

* E.g., a numeric function with two 32-bit integer arguments:
Total number of combinations?

F. Vesely CS 4500 October 4, 2019 22/33

Choosing Test Cases

* Exhaustive tests for routines - usually not feasible

* E.g., a numeric function with two 32-bit integer arguments:
Total number of combinations?

232 % 232 = 254 — 18 446,744,073,709,551,616

* Do we need to test all of those cases?

F. Vesely October 4, 2019 22/33

Choosing Test Cases

* Test cases should:
(a) show that component does what it's supposed to
(b) reveal defects if there are any

* Corresponding types of unit test cases:

(a) exercise / exhibit normal operation
(b) check problem cases, check abnormal inputs - do they cause a crash

F. Vesely CS 4500 October 4, 2019 23/33

Strategies for Choosing Test Cases

Partition testing
* |dentify groups of input with common characteristics
* These should be processed the same way by SUT
* Choose from each group
Guideline-based testing
* Based on previous experience with common errors

Partition Testing

Inputs and outputs - fall into different classes

Where members of a class are related — equivalence classes

Each class - equivalence partition / domain

Program behaves equivalently for each member of the same class
Test cases from each partition

Partition Testing

Consider bool validPassword(String pass)

Should return true if:
(a) 8<pass.length() <15
(b) contains at least one digit

Otherwise false

Exception on non-latin1 characters

F. Vesely CS 4500 October 4, 2019 26/33

Partition Testing

validPassword input partitions:

(a) valid: only contains latin1 and

. both (a) and (b)

(b) and pass.length() <8

(b) and pass.length() >15

(a) and pass does not contain a digit

. pass.length() <8 and does not contain a digit

S R I N

. pass.length() > 15 and does not contain a digit
(b) invalid:

1. pass contains a Latin1 character

Partition Testing

Depending on need and input type:
1. Choose a normal value from each partition (“middle”)
2. Choose boundary values - below and above

Eg.,
e "' (false),
e "1234" (false),
e "1234567" (false),
e "12345678" (true)

F. Vesely CS 4500 October 4, 2019 28/33

Testing Guidelines

General, e.g.,:
* Choose inputs that force the system to generate all error messages
* Design inputs that cause input buffers to overflow

Repeat the same input or series of inputs numerous times

Force invalid outputs to be generated

Force computation results to be too large or too small

Testing Guidelines

Specific, e.g., for sequences:

1. Test with singleton sequences
» Programmers sometimes think of sequences as containing more than one
value
2. Use different sequences of different sizes in different tests
» Reduce chance of hiding errors because of accidental characteristics of the
input
3. Ensure that first, middle, and last elements of the sequence are
accessed
» Reveals problems at partition boundaries

F. Vesely October 4,2019 30/33

Property-based Testing

* Generative testing

* Not supplying specific inputs and expected outputs

* Write properties about code

* Engine generates random inputs

* Check if properties hold

* Originally: QuickCheck in Haskell

e Java: junit-quickcheck (https://pholser.github.io/junit-quickcheck/)
Python: Hypothesis (https://hypothesis.readthedocs.io/en/latest/)

QuickCheck in Haskell

For example:

prop_commutativeAdd :: Int -> Int -> Bool
prop_commutativeAdd X y = X + y ==Yy + X
prop_reverseReverse :: [Int] -> Bool
prop_reverseReverse xs = reverse (reverse Xs) == XS

> quickCheck prop_commutativeAdd
+++ 0K, passed 100 tests.
> quickCheck prop_reverseReverse
+++ 0K, passed 100 tests.

QuickCheck in Java

@RunWith(JUnitQuickcheck.class)
public class StringProperties {
@Property public void concatenationLength(String s1, String s2)
assertEquals(sl.length() + s2.length(),
(sl + s2).length());

F. Vesely CS 4500 October 4, 2019 33/33

	The Big Picture
	Development Testing

