
CS 4500
Software Development

Unit Testing

Ferdinand Vesely

October 4, 2019

F. Vesely CS 4500 October 4, 2019 1 / 33



The Big Picture



Software Veri�cation & Validation

• A wider process – various activities

Verification & Validation

Reviews Testing
Formal

Verification
. . .

F. Vesely CS 4500 October 4, 2019 3 / 33



Software Veri�cation & Validation

Goal

Ensure that the system meets expectations.

F. Vesely CS 4500 October 4, 2019 4 / 33



Software Veri�cation & Validation

Validation
Are we building the right product?

• Does the system deliver functionality expected by stakeholders?
• E.g., acceptance testing

Veri�cation
Are we building the product right?

• Does the system meet its speci�cation?
• Formal veri�cation, testing

F. Vesely CS 4500 October 4, 2019 5 / 33



Veri�cation: Approaches

Formal Veri�cation
With respect to a (formal) speci�cation:
1. Model checking
• enumerate all states
• show that each state satis�es desired properties

2. Deductive veri�cation
• speci�cation + implementation⇒ proof obligations

Caveat: How do we know the spec is adequate?

F. Vesely CS 4500 October 4, 2019 6 / 33



Veri�cation: Testing

• Show program behaves as intended
• Discover defects
• Execute program with arti�cial data
• Check the results: Errors? Anomalies?

F. Vesely CS 4500 October 4, 2019 7 / 33



Limitations

“Testing can only show the presence of er-
rors, not their absence”

- Dijkstra

F. Vesely CS 4500 October 4, 2019 8 / 33



Stages

1. Development Testing
Ï system is tested during development to discover bugs and defects

2. Release Testing
Ï complete version of the system before release
Ï separate team

3. User Testing
Ï Alpha testing
Ï Beta testing
Ï Acceptance testing

F. Vesely CS 4500 October 4, 2019 9 / 33



Development Testing



Levels

Unit

• individual program
units

• functionality of
routines and
components

Integration

• gradually integrate
components

• test as each new
component
integrated

System

• test the system as a
whole

• closest to user’s
experience of the
system

F. Vesely CS 4500 October 4, 2019 11 / 33



Unit Testing

• Test individual units in isolation
• Defect testing process:

Ï Discover faults or defects
Ï Where behavior incorrect / not conforming to spec
Ï Success: bug discovered

• Units:
Ï Individual functions / methods
Ï Modules / object classes

F. Vesely CS 4500 October 4, 2019 12 / 33



Module / Class Testing

Complete coverage:
• Test all operations associate with a module / object
• Set / interrogate all object attributes
• Exercise all possible states

Ï simulate all events which cause a state change

Inheritance
• Information is not localized
• Not enough to test in parent class and assume operation works in
subclasses

F. Vesely CS 4500 October 4, 2019 13 / 33



Manual Testing?

• Possible to test manually. . .
• Usually not necessary at unit level
• Slows down development

F. Vesely CS 4500 October 4, 2019 14 / 33



Unit Test Automation

• Whenever possible: automate
• Tests run and checked without manual intervention
• Automation frameworks, e.g., the xUnit family

F. Vesely CS 4500 October 4, 2019 15 / 33



Unit Test Setup

Driver

Unit under test

Stub / mockStub / mock

Results

Test cases

F. Vesely CS 4500 October 4, 2019 16 / 33



Test Case Execution

1. Setup
Ï set up environment / context for the test

2. Test
Ï invoke the unit under test
Ï check assertion on the result

3. Teardown
Ï tear down the environment

F. Vesely CS 4500 October 4, 2019 17 / 33



Test Case Execution

Stack<int> testStack;
...
void testNewStackEmpty() {

testStack = new Stack<int>(); // setup

assertTrue(testStack.empty()); // test

delete testStack; // teardown
}

void tests() {
testNewStackEmpty();
testPushThenPopEmpty();
...

}

F. Vesely CS 4500 October 4, 2019 18 / 33



xUnit

• unit test automation frameworks
• simpli�es administration of tests
• origin: Smalltalk
• JUnit, unittest (Python), cppunit, OUnit, . . .

F. Vesely CS 4500 October 4, 2019 19 / 33



xUnit

Concepts:
1. Fixture / context

Ï provides environment for each test
Ï set up and teardown

2. Test case
Ï executes a scenario
Ï checks assertions

3. Test suite
Ï collections of test cases with a common �xture
Ï order of test cases should not matter

4. Runner (driver)
Ï run test suites, report results

F. Vesely CS 4500 October 4, 2019 20 / 33



Mock Objects

class EmptyMockStack extends Stack<int> {
public boolean empty() {
log.println("empty()");
return true;

}

public void push(int elt) {
log.println("push(" + elt +")");

}
...

}

F. Vesely CS 4500 October 4, 2019 21 / 33



Choosing Test Cases

• Exhaustive tests for routines – usually not feasible
• E.g., a numeric function with two 32-bit integer arguments:
Total number of combinations?

232 ×232 = 264 = 18,446,744,073,709,551,616

• Do we need to test all of those cases?

F. Vesely CS 4500 October 4, 2019 22 / 33



Choosing Test Cases

• Exhaustive tests for routines – usually not feasible
• E.g., a numeric function with two 32-bit integer arguments:
Total number of combinations?

232 ×232 = 264 = 18,446,744,073,709,551,616

• Do we need to test all of those cases?

F. Vesely CS 4500 October 4, 2019 22 / 33



Choosing Test Cases

• Test cases should:
(a) show that component does what it’s supposed to
(b) reveal defects if there are any

• Corresponding types of unit test cases:
(a) exercise / exhibit normal operation
(b) check problem cases, check abnormal inputs – do they cause a crash

F. Vesely CS 4500 October 4, 2019 23 / 33



Strategies for Choosing Test Cases

Partition testing
• Identify groups of input with common characteristics
• These should be processed the same way by SUT
• Choose from each group

Guideline-based testing
• Based on previous experience with common errors

F. Vesely CS 4500 October 4, 2019 24 / 33



Partition Testing

• Inputs and outputs – fall into di�erent classes
• Where members of a class are related – equivalence classes
• Each class – equivalence partition / domain
• Program behaves equivalently for each member of the same class
• Test cases from each partition

F. Vesely CS 4500 October 4, 2019 25 / 33



Partition Testing

• Consider bool validPassword(String pass)

• Should return true if:
(a) 8 ≤ pass.length() ≤ 15
(b) contains at least one digit

• Otherwise false
• Exception on non-latin1 characters

F. Vesely CS 4500 October 4, 2019 26 / 33



Partition Testing

validPassword input partitions:
(a) valid: only contains latin1 and

1. both (a) and (b)
2. (b) and pass.length() < 8

3. (b) and pass.length() > 15

4. (a) and pass does not contain a digit
5. pass.length() < 8 and does not contain a digit
6. pass.length() > 15 and does not contain a digit

(b) invalid:

1. pass contains a Latin1 character

F. Vesely CS 4500 October 4, 2019 27 / 33



Partition Testing

Depending on need and input type:
1. Choose a normal value from each partition (“middle”)
2. Choose boundary values – below and above

E.g.,
• "" (false),
• "1234" (false),
• "1234567" (false),
• "12345678" (true)

F. Vesely CS 4500 October 4, 2019 28 / 33



Testing Guidelines

General, e.g.,:
• Choose inputs that force the system to generate all error messages
• Design inputs that cause input bu�ers to over�ow
• Repeat the same input or series of inputs numerous times
• Force invalid outputs to be generated
• Force computation results to be too large or too small

F. Vesely CS 4500 October 4, 2019 29 / 33



Testing Guidelines

Speci�c, e.g., for sequences:
1. Test with singleton sequences

Ï Programmers sometimes think of sequences as containing more than one
value

2. Use di�erent sequences of di�erent sizes in di�erent tests
Ï Reduce chance of hiding errors because of accidental characteristics of the
input

3. Ensure that �rst, middle, and last elements of the sequence are
accessed

Ï Reveals problems at partition boundaries

F. Vesely CS 4500 October 4, 2019 30 / 33



Property-based Testing

• Generative testing
• Not supplying speci�c inputs and expected outputs
• Write properties about code
• Engine generates random inputs
• Check if properties hold
• Originally: QuickCheck in Haskell
• Java: junit-quickcheck (https://pholser.github.io/junit-quickcheck/)
• Python: Hypothesis (https://hypothesis.readthedocs.io/en/latest/)

F. Vesely CS 4500 October 4, 2019 31 / 33



QuickCheck in Haskell

For example:

prop_commutativeAdd :: Int -> Int -> Bool
prop_commutativeAdd x y = x + y == y + x

prop_reverseReverse :: [Int] -> Bool
prop_reverseReverse xs = reverse (reverse xs) == xs

> quickCheck prop_commutativeAdd
+++ OK, passed 100 tests.
> quickCheck prop_reverseReverse
+++ OK, passed 100 tests.

F. Vesely CS 4500 October 4, 2019 32 / 33



QuickCheck in Java

@RunWith(JUnitQuickcheck.class)
public class StringProperties {

@Property public void concatenationLength(String s1, String s2) {
assertEquals(s1.length() + s2.length(),

(s1 + s2).length());
}

}

F. Vesely CS 4500 October 4, 2019 33 / 33


	The Big Picture
	Development Testing

