
CS 4500
Software Development

Design Patterns

October 11, 2019

CS 4500 October 11, 2019 1 / 33



Motivation

Many design issues / challenges:
• Have been faced before
• Have been addressed and solved repeatedly
• Some solutions are more successful than others
• Abstraction of solutions to design problems = design pattern

CS 4500 October 11, 2019 2 / 33



Design Patterns

• Goal: not to solve every problem from �rst principles

• Simple and elegant solutions to speci�c (recurring) problems in
component design

• A three-part rule – expresses a relation between a certain context, a
problem, and a solution

• Captures design knowledge in a way that allows others to use that
knowledge

• Originated in OOD, but applicable to other approaches to modular
design

• Seen some in CS3500

CS 4500 October 11, 2019 3 / 33



Design Patterns

• Goal: not to solve every problem from �rst principles
• Simple and elegant solutions to speci�c (recurring) problems in
component design

• A three-part rule – expresses a relation between a certain context, a
problem, and a solution

• Captures design knowledge in a way that allows others to use that
knowledge

• Originated in OOD, but applicable to other approaches to modular
design

• Seen some in CS3500

CS 4500 October 11, 2019 3 / 33



Design Patterns

• Goal: not to solve every problem from �rst principles
• Simple and elegant solutions to speci�c (recurring) problems in
component design

• A three-part rule – expresses a relation between a certain context, a
problem, and a solution

• Captures design knowledge in a way that allows others to use that
knowledge

• Originated in OOD, but applicable to other approaches to modular
design

• Seen some in CS3500

CS 4500 October 11, 2019 3 / 33



Design Patterns

• Goal: not to solve every problem from �rst principles
• Simple and elegant solutions to speci�c (recurring) problems in
component design

• A three-part rule – expresses a relation between a certain context, a
problem, and a solution

• Captures design knowledge in a way that allows others to use that
knowledge

• Originated in OOD, but applicable to other approaches to modular
design

• Seen some in CS3500

CS 4500 October 11, 2019 3 / 33



Design Patterns

• Goal: not to solve every problem from �rst principles
• Simple and elegant solutions to speci�c (recurring) problems in
component design

• A three-part rule – expresses a relation between a certain context, a
problem, and a solution

• Captures design knowledge in a way that allows others to use that
knowledge

• Originated in OOD, but applicable to other approaches to modular
design

• Seen some in CS3500

CS 4500 October 11, 2019 3 / 33



Design Patterns

• Goal: not to solve every problem from �rst principles
• Simple and elegant solutions to speci�c (recurring) problems in
component design

• A three-part rule – expresses a relation between a certain context, a
problem, and a solution

• Captures design knowledge in a way that allows others to use that
knowledge

• Originated in OOD, but applicable to other approaches to modular
design

• Seen some in CS3500

CS 4500 October 11, 2019 3 / 33



E�ective Design Patterns

Solve a problem Capture solutions, not just abstract principles or
strategies.

Proven concept Capture solutions with a track record, not theories or
speculation.

Solution isn’t obvious Best patterns generate a solution to a problem
indirectly

Describes a relationship Patterns don’t just describe modules, describe
deeper system structures and mechanisms.

Signi�cant human component Best patterns explicitly appeal to
aesthetics and utility.

CS 4500 October 11, 2019 4 / 33



E�ective Design Patterns

Solve a problem Capture solutions, not just abstract principles or
strategies.

Proven concept Capture solutions with a track record, not theories or
speculation.

Solution isn’t obvious Best patterns generate a solution to a problem
indirectly

Describes a relationship Patterns don’t just describe modules, describe
deeper system structures and mechanisms.

Signi�cant human component Best patterns explicitly appeal to
aesthetics and utility.

CS 4500 October 11, 2019 4 / 33



E�ective Design Patterns

Solve a problem Capture solutions, not just abstract principles or
strategies.

Proven concept Capture solutions with a track record, not theories or
speculation.

Solution isn’t obvious Best patterns generate a solution to a problem
indirectly

Describes a relationship Patterns don’t just describe modules, describe
deeper system structures and mechanisms.

Signi�cant human component Best patterns explicitly appeal to
aesthetics and utility.

CS 4500 October 11, 2019 4 / 33



E�ective Design Patterns

Solve a problem Capture solutions, not just abstract principles or
strategies.

Proven concept Capture solutions with a track record, not theories or
speculation.

Solution isn’t obvious Best patterns generate a solution to a problem
indirectly

Describes a relationship Patterns don’t just describe modules, describe
deeper system structures and mechanisms.

Signi�cant human component Best patterns explicitly appeal to
aesthetics and utility.

CS 4500 October 11, 2019 4 / 33



E�ective Design Patterns

Solve a problem Capture solutions, not just abstract principles or
strategies.

Proven concept Capture solutions with a track record, not theories or
speculation.

Solution isn’t obvious Best patterns generate a solution to a problem
indirectly

Describes a relationship Patterns don’t just describe modules, describe
deeper system structures and mechanisms.

Signi�cant human component Best patterns explicitly appeal to
aesthetics and utility.

CS 4500 October 11, 2019 4 / 33



A Pattern Language
• DPs originated in architecture

Ï but inspired by CS

“Each pattern describes a problem which occurs
over and over again in our environment, and then
describes the core of the solution to that problem,
in such a way that you can use this solution a mil-
lion times over, without ever doing it the same way
twice”

“Each solution is stated in such a way that it gives
the essential �eld of relationships needed to solve
the problem, but in a very general and abstract
way—so you can solve the problem for yourself, in
your own way, by adapting it to your preferences,
and the local conditions at the place where you are
making it.”

A Pattern Language (1977)
– contains 253 patterns of
architectural and urban
design

CS 4500 October 11, 2019 5 / 33



Design Patterns as a Language

• Organization principle for software components
• Guides design of components
• DP catalogs – usually presented using a template:

Ï DP name
Ï Problem it addresses
Ï Motivation – example
Ï Applicability
Ï Consequences
Ï . . .

CS 4500 October 11, 2019 6 / 33



Design Patterns as a Language

• Shared design knowledge
• Recognizable

Ï Readability
Ï Maintainability
Ï Easier communication

CS 4500 October 11, 2019 7 / 33



Classi�cation

Design
Patterns

Creational

Structural

Behavioral

• Also: Concurrent

CS 4500 October 11, 2019 8 / 33



“Gang of Four” Patterns

Creational
• Abstract Factory
• Builder‡

• Factory Method
• Prototype
• Singleton

Structural
• Adapter‡

• Bridge
• Composite
• Decorator‡

• Facade
• Flyweight
• Proxy

Behavioral
• Chain of Responsibility
• Command‡

• Interpreter
• Mediator
• Memento
• Observer
• State
• Strategy‡

• Template Method
• Visitor

‡Possibly seen in CS3500. . . ?

CS 4500 October 11, 2019 9 / 33



Creational Patterns

• Abstract the instantiation process of objects
• Make system independent from how its objects are created
• Creation, composition, representation of objects
• Encapsulate all knowledge about which concrete classes the system
is using

• Hide how instances of these classes are created and put together

CS 4500 October 11, 2019 10 / 33



Builder
Example

Constraint: the shape of a Labyrinth is immutable

class Labyrinth {
private Node[] nodes;
private Edge[] edges;

public Labyrinth(Collection<Node> nodes, Collection<Edge> edges) { ... }
...

CS 4500 October 11, 2019 11 / 33



Use:

Node nodeA = new Node("A");
Node nodeB = new Node("B");
Node nodeC = new Node("C");

ArrayList<Node> nodes = new ArrayList();
nodes.add(nodeA);
nodes.add(nodeB);
nodes.add(nodeC);
TreeSet<Edge> edges = new TreeSet(

Arrays.asList(new Edge(nodeA, nodeB), new Edge(nodeB, nodeC)));
Labyrinth lab = new Labyrinth(nodes, edges);
...

CS 4500 October 11, 2019 12 / 33



With a Builder Interface
class Labyrinth {

private Node[] nodes;
private Edge[] edges;

private Labyrinth(Node[] nodes, Edge[] edges) {
public static Builder getBuilder() { return new Builder(); }

public static class Builder {
private Edge[] edges;
private Node[] nodes;

public Builder();
public void addNode(String name);
public void addEdge(String from, String to);
public Labyrinth build() { ... }

}
...

CS 4500 October 11, 2019 13 / 33



Use:

Labyrinth.Builder builder = Labyrinth.getBuilder();
builder.addNode("A");
builder.addNode("B");
builder.addEdge("A", "B");
builder.addNode("C");
builder.addEdge("B", "C");
Labyrinth lab = builder.build();

CS 4500 October 11, 2019 14 / 33



Builder
With Chaining

Alternatively:

public static class Builder {
...
public Builder();
public Builder addNode(String name);
public Builder addEdge(String from, String to);
public Labyrinth build();

}
...

CS 4500 October 11, 2019 15 / 33



Use:

Labyrinth lab = Labyrinth.getBuilder()
.addNode("A")
.addNode("B")
.addEdge("A", "B")
.addNode("C")
.addEdge("B", "C")
.build();

CS 4500 October 11, 2019 16 / 33



Builder

• Situation: we have an object that, upon creation, can be set up in
complex ways

• Maybe we also have a default con�guration, or a few default
con�gurations

• Goal: separate object creation and con�guration from its
representation

CS 4500 October 11, 2019 17 / 33



Singleton
class Logger {

public Logger(String filename);
public void warning(String message);
public void info(String message);
...

}

class Foo {
public Foo(Logger logger) {
... new Bar(logger) ...

}

Logger logger = new Logger("log");
Foo foo1 = new Foo(logger);
...
Foo foo2 = new Foo(logger);

CS 4500 October 11, 2019 18 / 33



Singleton

class Logger {
private Logger instance = null;
public static Logger getInstance() {

if (instance == null) {
this.instance = new Logger("log");

}
return this.instance;

}

public log(String message) { ... }

private Logger(String filename) { ... }
}

• Careful about multiple threads

CS 4500 October 11, 2019 19 / 33



Singleton

class Logger {
private Logger instance = null;
public static Logger getInstance() {

if (instance == null) {
this.instance = new Logger("log");

}
return this.instance;

}

public log(String message) { ... }

private Logger(String filename) { ... }
}

• Careful about multiple threads
CS 4500 October 11, 2019 19 / 33



Singleton

• Used to limit to a single instance of a class
• Single global access point to instance
• Unlike static, enforces initialization
• E.g.: database connection manager, logging service

• Somewhat controversial – global point of entry – might obscure
control �ow

CS 4500 October 11, 2019 20 / 33



Singleton

• Used to limit to a single instance of a class
• Single global access point to instance
• Unlike static, enforces initialization
• E.g.: database connection manager, logging service
• Somewhat controversial – global point of entry – might obscure
control �ow

CS 4500 October 11, 2019 20 / 33



Structural Patterns

• Focus: how classes and objects are composed to form larger
structures

• Help establish relationships between entities within a system
• “Class patterns”: compose interfaces or implementations
• “Object patterns”: compose objects to realize new functionality

CS 4500 October 11, 2019 21 / 33



Adapter

• Converts between interfaces: Adaptee and Target
• If an object provides a di�erent interface than a client expects
• Two approaches:

Ï Object adapter: implements Target’s interface by maintaining an instance of
Adaptee delegating to it at runtime

Ï Class-based: implements Target’s interface and inherits from Adaptee at
compile-time

CS 4500 October 11, 2019 22 / 33



Adapter
interface Array<T> {

T get(int index);
}

interface Iterable<T> {
Iterator<T> iterator();

}

interface Iterator<T> {
T next();
T prev();
T reset();

}

class IterableAsArray<T> implements Array<T>{
T get(int index) { ... }

}

CS 4500 October 11, 2019 23 / 33



Proxy

• Provide a surrogate or a place holder for another object
• Allows controlling access to the object it represents
• Implements the same interface as the real subject

Ï Prevents complicating the client of the real subject
Ï Clients can’t tell if they are using a surrogate

• Scenarios:
Ï Delaying the initialization of an expensive resource – on-demand loading –
virtual proxy

Ï Caching for a slow connection
Ï Control access based on access rights – protection proxy
Ï Local representation for a remote object – remote proxy
Ï Ensuring that a resource is locked before it’s accessed – smart proxy

CS 4500 October 11, 2019 24 / 33



public interface Image {
void display();

}

public class RealImage implements Image {
public RealImage(String fileName) { loadFromDisk(fileName); }
public void display() { ... }
private void loadFromDisk(String fileName) { ... }

}

public class ProxyImage implements Image{
private RealImage realImage = null;
public ProxyImage(String fileName) { ... }
public void display() {

if (realImage == null)
realImage = new RealImage(fileName);

realImage.display();
}

}

CS 4500 October 11, 2019 25 / 33



Remote Proxy

• Represents a remote resource locally
• Useful, e.g., when switching between a local to a remote
implementation

• Hiding that the system is distributed
• Example: local �le access→ WebDAV
• Example: using a remote service to render an image

CS 4500 October 11, 2019 26 / 33



Remote Proxy

interface Labyrinth {
public void create(Set<Node> nodes, Set<Edge> edges);
public void addToken(Node node, Color token);
public bool reachable(Color token, Node node);

}

class LocalLabyrinth implements Labyrinth { ... }

class TCPLabyrinth implements Labyrinth {
public TCPLabyrinth(String host, int port) { ... }
...
public void addToken(Node node, Color token) { ... sendRequest; ... }

}

CS 4500 October 11, 2019 27 / 33



Behavioral

• Algorithms
• Assignment of responsibilities between objects
• Patterns of communication between objects
• Characterize complex control �ow
• Shift focus: from �ow of control toward the way objects are
interconnected

CS 4500 October 11, 2019 28 / 33



Observer

• An object (subject) maintains a list of observers
• Observers get noti�ed of state changes
• Scenarios:

Ï Update multiple views of the same data when the data changes
Ï Clients perform actions in lock-step and need to be noti�ed of the tick of a
common clock

• Careful: avoid a chain of observers

CS 4500 October 11, 2019 29 / 33



interface Observer<T> {
void update(T data);

}

interface Subject<T> {
public void attach(Observer<T> observer);
public void detach(Observer<T> observer);
public void notify();

}

CS 4500 October 11, 2019 30 / 33



Applicability / Discussion

• Are common design patterns applicable in your language?
• Are they needed?
• How about di�erent paradigms?

CS 4500 October 11, 2019 31 / 33



Resources

• Gamma, Helm, Johnson & Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. 1995 – aka the Gang of Four

• Freeman, Robson, Bates, Sierra. Head First Design Patterns. 2004
• https://en.wikipedia.org/wiki/Software_design_pattern
• https://refactoring.guru/design-patterns/catalog

CS 4500 October 11, 2019 32 / 33

https://en.wikipedia.org/wiki/Software_design_pattern
https://refactoring.guru/design-patterns/catalog


Summary

Design Patterns
• Successful solutions to software design problems – abstracted
• A language for building software components
• Available as repositories of patterns

CS 4500 October 11, 2019 33 / 33


