CS 4500
Software Development

Integration Testing

Ferdinand Vesely’

October 15, 2019

"Material based on Code Complete by Steve McConnell

F. Vesely CS 4500 October 15, 2019

1/28



Integration Testing

We have some components that pass all unit tests
We need to combine them together to form subsystems
How do we integrate?

How do we test?

F. Vesely CS 4500 October 15, 2019 2/28



Integration

Integration = combining separate software components into a single
system

* Also: Combining software units into components

* Integrated components — added complexity of interactions
* Cascade of interdependencies

* If done poorly, problems can “explode” at once

October 15,2019 3/28



Big-Bang Approach

Phased Integration

1. Unit development: Design, code, test, and debug each unit
2. System integration: Combine units into one big system
3. Test and debug the whole system

F. Vesely CS 4500 October 15, 2019 4/28



Big-Bang: Problems?

F. Vesely CS 4500 October 15, 2019 5/28



Big-Bang: Problems?

After integration: new problems inevitably surface
Causes could be anywhere

All components are potential suspects
Errors suddenly presented all at once
Errors themselves might interact

F. Vesely CS 4500 October 15, 2019 5/28



Big-Bang: Problems?

Global
variables

Different error- -
handling .
assumptions Big Bang
Integration

\ Poorly

u documented
interfaces
Weak
encapsulation

F. Vesely CS 4500 October 15, 2019 6/28



Incremental Integration

“One piece at a time” approach

In general:

1. Develop a small, functional part of the system - skeleton

» Thoroughly test and debug
» Skeleton: attach the remaining parts of the system

2. Design, code, test, and debug a unit

3. Integrate new unit with the skeleton

» Test & debug the combination
» Ensure combination works before adding new components

4. Go back to 2 if components need to be added



Benefits of Incremental Integration

F. Vesely CS 4500 October 15, 2019 8/28



Benefits of Incremental Integration

Errors easier to locate and fix

System success early
» Always in a relatively working state

Improved progress monitoring
Units tested more fully

F. Vesely CS 4500 October 15, 2019 8/28



Incremental Integration Strategies

* Integration of some components - required before the integration
of others

* Planning for integration — planning for construction

* Order of component construction has to support the order which
they will be integrated

F. Vesely CS 4500 October 15, 2019 9/28



Top-Down Integration

* Unit/component at top of hierarchy written and integrated first
* Testing: stubs to exercise the higher placed components
* Stubs gradually replaced with actual units

* Important: Carefully specified interfaces
» Avoid errors arising from subtle interactions

( Start —EI
¢

Finish



\ 4 Y \ 4
e Jle o]
TeSt \ 4 Y \ 4

A+B+C+D+
E+F+G

F. Vesely CS 4500 October 15, 2019 11/28



Pros / Cons
Pros

* Control logic of the system tested relatively early

» Components at top of hierarchy exercised often - expose conceptual/design
problems quickly

* Can complete a partially working system early
* Can begin implementing before low-level details are completed

Cons

* Tricky, low-level interfaces exercised last — can bubble up to the top
* Need to write many stubs
» Stubs can contain errors

* Sometimes: What is the top?

* Pure top-down mostly doesn’'t make sense - hybrid approaches

October 15, 2019 12/28



Top-Down Variant: Vertical Slice

* Work down in sections
* Fully flesh out a subsystem (functionality) before moving to the next

Start

Finish Finish Finish

F. Vesely CS 4500



Bottom-Up Integration

* First: Implement and integrate components at bottom of hierarchy

* Add one component at a time
* Testing: drivers to exercise lower-level components
* Replace drivers with higher-level components as they are developed

E—'Finish

= 1)

; == -

g B St )

[
] ] ]
LI L] N I - N I -

I

m
RS

October 15, 2019 1428




Bottom-Up




Bottom-Up Integration

Pros

* Restricts possible source of error
» The component being integrated

* Exercises potentially problematic interfaces early

Cons
* Integration of major high-level interfaces - last

* Conceptual design problems at higher levels:
» discovered late
» design changes: implementation/integration work might be discarded

* Design of the whole system - required before integration
» Otherwise: might end up designing high-level components around problem
in low-level ones
* Again, pure bottom-up often does not make sense

F. Vesely October 15, 2019 16 /28



Bottom-Up Variant: Vertical slices

* Integrate subsystems bottom to up

Finish

Start Start Start

F. Vesely CS 4500



Problems with Both Top-Down and Bottom-Up

* Rigidity
* Not really reflecting practice

e Alternatives: Sandwich, Risk-oriented, Feature-oriented

F. Vesely CS 4500 October 15, 2019 18 /28



Sandwich Integration

* First: Integrate and test high-level components
* Then: Most important low-level components
* Finally: Integrate mid-level components

1 Start

Finish




Risk-Oriented Integration

* “Hard part first” integration

* |dentify level of risk associated with a component
* Implement most challenging first

* Usually top-level and bottom-level first

R I

F. Vesely

October 15, 2019

20/28



Feature-Oriented Integration

Integrate a feature at a time

Feature: identifiable function of the system

 Start with a skeleton (e.g., a menu system implementation)
Add features to skeleton

Feature 1 skeleton

(menus, perhaps) i' ¢| Iil
Et] % [ O é
LILC] DD& ﬁ

Feature 2 Feature 3 Feature 4 Feature 5 Feature 6

October 15, 2019 21/28

F. Vesely



Feature-Oriented Integration

Feature might be bigger than a single unit/component

Increment: may be bigger than a single component
» Might reduce the certainty about location of errors

* Components — added as feature trees

Integration easier if features relatively independent



Advantages

* Mostly eliminates scaffolding (stubs and drivers)
» Skeleton might rely on some stubs

* Each new integrated feature: incremental addition to functionality

» Evidence of progress
» Functional software earlier

F. Vesely CS 4500 October 15, 2019 23/28



Daily Builds and “Smoke Tests”

Basically:

* Test integration frequently
* An executable is built every day?

* Perform a quick smoke test to see if the integrated program
“smokes” when run

* Preferably automated

2As applicable



Daily Builds

Daily build - “heartbeat” of a project

Check for “broken” builds - strict enough to identify showstoppers,
but does not draw attention to trivial defects

Successful build:

1. All relevant files compile
2. Everything links
3. Build passes the smoke tests

Broken builds should be fixed immediately



Smoke Tests

* Exercise the entire system
* Quick set of tests to run daily

* Not necessarily exhaustive - should be capable of exposing major
problems

* Ensure the daily build runs and is “sane”
* Needs to be kept current

F. Vesely CS 4500 October 15, 2019 26 /28



Continuous Integration

* A step further: integrate and test continuously
* “Continuously” = every few hours, at least once a day

* Repository — development should happen in master
» Branches are for experiments and bugfixes in older versions

* Everyone commits to master every day

* Load current release code, merge changes, run tests until 100% pass
* Every commit to master should be built

* State of master builds visible to everybody

* tooling: Cl servers — detect build, run tests

F. Vesely October 15, 2019 27/28



Summary

* Integration testing: check if independently developed units work
correctly when combined

* Approaches to incremental integration and integration testing:
Top-down, botom-up, hybrid, ...

* Various test doubles can be used to simulate behavior of
dependencies

* Daily builds and smoke tests — ensure always a relatively working
system

* Continuous integration — integrate every change

F. Vesely October 15, 2019 28/28



