
CS 4500
Software Development

Integration Testing

Ferdinand Vesely1

October 15, 2019

1Material based on Code Complete by Steve McConnell
F. Vesely CS 4500 October 15, 2019 1 / 28



Integration Testing

• We have some components that pass all unit tests
• We need to combine them together to form subsystems
• How do we integrate?
• How do we test?

F. Vesely CS 4500 October 15, 2019 2 / 28



Integration

Integration = combining separate software components into a single
system

• Also: Combining software units into components
• Integrated components – added complexity of interactions
• Cascade of interdependencies
• If done poorly, problems can “explode” at once

F. Vesely CS 4500 October 15, 2019 3 / 28



Big-Bang Approach

Phased Integration

1. Unit development: Design, code, test, and debug each unit
2. System integration: Combine units into one big system
3. Test and debug the whole system

F. Vesely CS 4500 October 15, 2019 4 / 28



Big-Bang: Problems?

• After integration: new problems inevitably surface
• Causes could be anywhere
• All components are potential suspects
• Errors suddenly presented all at once
• Errors themselves might interact

F. Vesely CS 4500 October 15, 2019 5 / 28



Big-Bang: Problems?

• After integration: new problems inevitably surface
• Causes could be anywhere
• All components are potential suspects
• Errors suddenly presented all at once
• Errors themselves might interact

F. Vesely CS 4500 October 15, 2019 5 / 28



Big-Bang: Problems?

F. Vesely CS 4500 October 15, 2019 6 / 28



Incremental Integration

“One piece at a time” approach

In general:
1. Develop a small, functional part of the system – skeleton

Ï Thoroughly test and debug
Ï Skeleton: attach the remaining parts of the system

2. Design, code, test, and debug a unit
3. Integrate new unit with the skeleton

Ï Test & debug the combination
Ï Ensure combination works before adding new components

4. Go back to 2 if components need to be added

F. Vesely CS 4500 October 15, 2019 7 / 28



Bene�ts of Incremental Integration

• Errors easier to locate and �x
• System success early

Ï Always in a relatively working state
• Improved progress monitoring
• Units tested more fully

F. Vesely CS 4500 October 15, 2019 8 / 28



Bene�ts of Incremental Integration

• Errors easier to locate and �x
• System success early

Ï Always in a relatively working state
• Improved progress monitoring
• Units tested more fully

F. Vesely CS 4500 October 15, 2019 8 / 28



Incremental Integration Strategies

• Integration of some components – required before the integration
of others

• Planning for integration – planning for construction
• Order of component construction has to support the order which
they will be integrated

F. Vesely CS 4500 October 15, 2019 9 / 28



Top-Down Integration
• Unit/component at top of hierarchy written and integrated �rst
• Testing: stubs to exercise the higher placed components
• Stubs gradually replaced with actual units
• Important: Carefully speci�ed interfaces

Ï Avoid errors arising from subtle interactions

F. Vesely CS 4500 October 15, 2019 10 / 28



Top-Down

Test A

Test 
A + B + C + D

Test 
A + B + C + D +

E + F + G

A

B

E

C D

GF

F. Vesely CS 4500 October 15, 2019 11 / 28



Pros / Cons
Pros

• Control logic of the system tested relatively early
Ï Components at top of hierarchy exercised often – expose conceptual/design
problems quickly

• Can complete a partially working system early
• Can begin implementing before low-level details are completed

Cons
• Tricky, low-level interfaces exercised last – can bubble up to the top
• Need to write many stubs

Ï Stubs can contain errors
• Sometimes: What is the top?
• Pure top-down mostly doesn’t make sense – hybrid approaches

F. Vesely CS 4500 October 15, 2019 12 / 28



Top-Down Variant: Vertical Slice
• Work down in sections
• Fully �esh out a subsystem (functionality) before moving to the next

F. Vesely CS 4500 October 15, 2019 13 / 28



Bottom-Up Integration
• First: Implement and integrate components at bottom of hierarchy
• Add one component at a time
• Testing: drivers to exercise lower-level components
• Replace drivers with higher-level components as they are developed

F. Vesely CS 4500 October 15, 2019 14 / 28



Bottom-Up

Test E
Test 

B + E + F

Test 
A +B + C + D

+ E + F

Test F

Test G Test D + G

Test C

A

B

E

C D

GF

F. Vesely CS 4500 October 15, 2019 15 / 28



Bottom-Up Integration
Pros

• Restricts possible source of error
Ï The component being integrated

• Exercises potentially problematic interfaces early

Cons
• Integration of major high-level interfaces – last
• Conceptual design problems at higher levels:

Ï discovered late
Ï design changes: implementation/integration work might be discarded

• Design of the whole system – required before integration
Ï Otherwise: might end up designing high-level components around problem
in low-level ones

• Again, pure bottom-up often does not make sense
F. Vesely CS 4500 October 15, 2019 16 / 28



Bottom-Up Variant: Vertical slices
• Integrate subsystems bottom to up

F. Vesely CS 4500 October 15, 2019 17 / 28



Problems with Both Top-Down and Bottom-Up

• Rigidity

• Not really re�ecting practice

• Alternatives: Sandwich, Risk-oriented, Feature-oriented

F. Vesely CS 4500 October 15, 2019 18 / 28



Sandwich Integration

• First: Integrate and test high-level components
• Then: Most important low-level components
• Finally: Integrate mid-level components

F. Vesely CS 4500 October 15, 2019 19 / 28



Risk-Oriented Integration
• “Hard part �rst” integration
• Identify level of risk associated with a component
• Implement most challenging �rst
• Usually top-level and bottom-level �rst

F. Vesely CS 4500 October 15, 2019 20 / 28



Feature-Oriented Integration
• Integrate a feature at a time
• Feature: identi�able function of the system
• Start with a skeleton (e.g., a menu system implementation)
• Add features to skeleton

F. Vesely CS 4500 October 15, 2019 21 / 28



Feature-Oriented Integration

• Feature might be bigger than a single unit/component
• Increment: may be bigger than a single component

Ï Might reduce the certainty about location of errors
• Components – added as feature trees
• Integration easier if features relatively independent

F. Vesely CS 4500 October 15, 2019 22 / 28



Advantages

• Mostly eliminates sca�olding (stubs and drivers)
Ï Skeleton might rely on some stubs

• Each new integrated feature: incremental addition to functionality
Ï Evidence of progress
Ï Functional software earlier

F. Vesely CS 4500 October 15, 2019 23 / 28



Daily Builds and “Smoke Tests”

Basically:

• Test integration frequently

• An executable is built every day2

• Perform a quick smoke test to see if the integrated program
“smokes” when run

• Preferably automated

2As applicable
F. Vesely CS 4500 October 15, 2019 24 / 28



Daily Builds

• Daily build – “heartbeat” of a project
• Check for “broken” builds – strict enough to identify showstoppers,
but does not draw attention to trivial defects

• Successful build:
1. All relevant �les compile
2. Everything links
3. Build passes the smoke tests

• Broken builds should be �xed immediately

F. Vesely CS 4500 October 15, 2019 25 / 28



Smoke Tests

• Exercise the entire system
• Quick set of tests to run daily
• Not necessarily exhaustive – should be capable of exposing major
problems

• Ensure the daily build runs and is “sane”
• Needs to be kept current

F. Vesely CS 4500 October 15, 2019 26 / 28



Continuous Integration

• A step further: integrate and test continuously
• “Continuously” = every few hours, at least once a day
• Repository – development should happen in master

Ï Branches are for experiments and bug�xes in older versions
• Everyone commits to master every day
• Load current release code, merge changes, run tests until 100% pass
• Every commit to master should be built
• State of master builds visible to everybody
• tooling: CI servers – detect build, run tests

F. Vesely CS 4500 October 15, 2019 27 / 28



Summary

• Integration testing: check if independently developed units work
correctly when combined

• Approaches to incremental integration and integration testing:
Top-down, botom-up, hybrid, . . .

• Various test doubles can be used to simulate behavior of
dependencies

• Daily builds and smoke tests – ensure always a relatively working
system

• Continuous integration – integrate every change

F. Vesely CS 4500 October 15, 2019 28 / 28


