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Integration Testing

We have some components that pass all unit tests
We need to combine them together to form subsystems
How do we integrate?

How do we test?
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Integration

Integration = combining separate software components into a single
system

* Also: Combining software units into components

* Integrated components — added complexity of interactions
* Cascade of interdependencies

* If done poorly, problems can “explode” at once
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Big-Bang Approach

Phased Integration

1. Unit development: Design, code, test, and debug each unit
2. System integration: Combine units into one big system
3. Test and debug the whole system
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Big-Bang: Problems?
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Big-Bang: Problems?

After integration: new problems inevitably surface
Causes could be anywhere

All components are potential suspects
Errors suddenly presented all at once
Errors themselves might interact
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Big-Bang: Problems?
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Incremental Integration

“One piece at a time” approach

In general:

1. Develop a small, functional part of the system - skeleton

» Thoroughly test and debug
» Skeleton: attach the remaining parts of the system

2. Design, code, test, and debug a unit

3. Integrate new unit with the skeleton

» Test & debug the combination
» Ensure combination works before adding new components

4. Go back to 2 if components need to be added



Benefits of Incremental Integration
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Benefits of Incremental Integration

Errors easier to locate and fix

System success early
» Always in a relatively working state

Improved progress monitoring
Units tested more fully
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Incremental Integration Strategies

* Integration of some components - required before the integration
of others

* Planning for integration — planning for construction

* Order of component construction has to support the order which
they will be integrated
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Top-Down Integration

* Unit/component at top of hierarchy written and integrated first
* Testing: stubs to exercise the higher placed components
* Stubs gradually replaced with actual units

* Important: Carefully specified interfaces
» Avoid errors arising from subtle interactions
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Pros / Cons
Pros

* Control logic of the system tested relatively early

» Components at top of hierarchy exercised often - expose conceptual/design
problems quickly

* Can complete a partially working system early
* Can begin implementing before low-level details are completed

Cons

* Tricky, low-level interfaces exercised last — can bubble up to the top
* Need to write many stubs
» Stubs can contain errors

* Sometimes: What is the top?

* Pure top-down mostly doesn’'t make sense - hybrid approaches

October 15, 2019 12/28



Top-Down Variant: Vertical Slice

* Work down in sections
* Fully flesh out a subsystem (functionality) before moving to the next
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Bottom-Up Integration

* First: Implement and integrate components at bottom of hierarchy

* Add one component at a time
* Testing: drivers to exercise lower-level components
* Replace drivers with higher-level components as they are developed
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Bottom-Up




Bottom-Up Integration

Pros

* Restricts possible source of error
» The component being integrated

* Exercises potentially problematic interfaces early

Cons
* Integration of major high-level interfaces - last

* Conceptual design problems at higher levels:
» discovered late
» design changes: implementation/integration work might be discarded

* Design of the whole system - required before integration
» Otherwise: might end up designing high-level components around problem
in low-level ones
* Again, pure bottom-up often does not make sense
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Bottom-Up Variant: Vertical slices

* Integrate subsystems bottom to up
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Problems with Both Top-Down and Bottom-Up

* Rigidity
* Not really reflecting practice

e Alternatives: Sandwich, Risk-oriented, Feature-oriented
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Sandwich Integration

* First: Integrate and test high-level components
* Then: Most important low-level components
* Finally: Integrate mid-level components
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Risk-Oriented Integration

* “Hard part first” integration

* |dentify level of risk associated with a component
* Implement most challenging first

* Usually top-level and bottom-level first
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Feature-Oriented Integration

Integrate a feature at a time

Feature: identifiable function of the system

 Start with a skeleton (e.g., a menu system implementation)
Add features to skeleton

Feature 1 skeleton
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Feature 2 Feature 3 Feature 4 Feature 5 Feature 6
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Feature-Oriented Integration

Feature might be bigger than a single unit/component

Increment: may be bigger than a single component
» Might reduce the certainty about location of errors

* Components — added as feature trees

Integration easier if features relatively independent



Advantages

* Mostly eliminates scaffolding (stubs and drivers)
» Skeleton might rely on some stubs

* Each new integrated feature: incremental addition to functionality

» Evidence of progress
» Functional software earlier
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Daily Builds and “Smoke Tests”

Basically:

* Test integration frequently
* An executable is built every day?

* Perform a quick smoke test to see if the integrated program
“smokes” when run

* Preferably automated

2As applicable



Daily Builds

Daily build - “heartbeat” of a project

Check for “broken” builds - strict enough to identify showstoppers,
but does not draw attention to trivial defects

Successful build:

1. All relevant files compile
2. Everything links
3. Build passes the smoke tests

Broken builds should be fixed immediately



Smoke Tests

* Exercise the entire system
* Quick set of tests to run daily

* Not necessarily exhaustive - should be capable of exposing major
problems

* Ensure the daily build runs and is “sane”
* Needs to be kept current
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Continuous Integration

* A step further: integrate and test continuously
* “Continuously” = every few hours, at least once a day

* Repository — development should happen in master
» Branches are for experiments and bugfixes in older versions

* Everyone commits to master every day

* Load current release code, merge changes, run tests until 100% pass
* Every commit to master should be built

* State of master builds visible to everybody

* tooling: Cl servers — detect build, run tests
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Summary

* Integration testing: check if independently developed units work
correctly when combined

* Approaches to incremental integration and integration testing:
Top-down, botom-up, hybrid, ...

* Various test doubles can be used to simulate behavior of
dependencies

* Daily builds and smoke tests — ensure always a relatively working
system

* Continuous integration — integrate every change
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