CS 4500
Software Development

Code Reviews

Ferdinand Vesely

October 25, 2019

19 1/24

Usually:
e Requirements and design — meetings, discussions, critique

® |nput from customers, managers, developers, and QA to synthesize a
result.

Why not for code?

F. Vesely CS 4500 October 25, 2019 2/24

Books

Nothing is commercially published without scrutiny and input from
editors

F. Vesely CS 4500 October 25, 2019 3/24

Code Reviews

e To discover defects in the design or code
e Part of the QA process, along with testing

Important:
Not to criticize the author, but to critique the code.

F. Vesely CS 4500 October 25, 2019 4/24

Benefits

Direct benefits:
® |Improved code quality

® Fewer defects in code
» Inspections typically catch 60% of defects

e |Improved communication about code content
e Education of junior programmers

F. Vesely CS 4500 October 25, 2019 5/24

Types

Formal inspections

“Over-the-shoulder” reviews

E-mail pass-around reviews

Tool Assisted Reviews

Instant Review (Pair Programming)

F. Vesely CS 4500 October 25, 2019 6/24

Formal Inspections

Heavy-process review
3-6 participants
Specific roles

Formal process
Traceable, measurable

F. Vesely CS 4500 October 25, 2019 7124

Formal Inspections

Roles

1. Moderator / controller
» Organizer (room, scheduling, distributing artifacts)
» Keep everyone on task
» Pace of review
» Arbiter of disputes

2. Reviewer
» Critical analysis

3. Reader
» Looks at source code for comprehension
» Presents this to the group
» Author does not present the code to the group
» This separates what the author intended from what is actually presented

8/24

Roles

4. Scribe

» Record errors
» Produce action items

5. Observer
» E.g., domain-specific advice or learning

6. Author

» Explain unclear parts of design or code
» Occasionally: explain why things that seem like errors but are fine
» Might present an initial overview of the project

F. Vesely CS 4500 October 25, 2019 9/24

Procedure

1. Planning

» Author gives code to moderator
» Moderator picks reviewer(s), time and place
» Distributes code + checklist

2. Overview
» If reviewers unfamiliar with project
» By author - shouldn’t speak for the code
» Risky

3. Preparation

» Reviewers scrutinize code individually
» Different reviewers might have different perspectives or scenarios to check

Procedure

4. Meeting

» Reader reads (paraphrases) the code

» All logic is explained

» Scribe records errors as they are discovered

» Moderator moves discussion along, keeps it focused

» Not too slow or too fast — around 150-200 nonblank, noncomment lines per
hours is a good place to start

» No discussion of solution - focus on discovering defects or shortcomings

» Not more than 2 hours

Report

Defects recorded in detail
Location

Severity

® Type

F. Vesely CS 4500 October 25,2019 12/ 24

Report

Additionally, metrics are recorded:
¢ Individual time spent
e LOC inspection rates
® Process improvement

F. Vesely CS 4500 October 25, 2019 13/ 24

Pros / Cons

Pros
e Many people spending time reading code
e Potentially many defects identified
e “Paper trail”
Cons
® Ties up many people for a considerable amount of time
e Complex meeting preparations
® Training might be needed

Over-the-shoulder Reviews

® Most common informal review

e A developer (who did not participate in development) reviews while
author walks through a set of code changes

e Author drives the review

® Resolution: “spot pair-programming” for small fixes
e Bigger changes taken off-line

® Remote alternative using screen-sharing software

Over-the-shoulder Reviews

Simple to execute
But: not an enforceable process

Easy for author to miss changes after review is done

Fixes for found bugs usually not verified
+/- Author controls the pace of the review

F. Vesely CS 4500 October 25, 2019 16 /24

Email Pass-around Reviews

Whole files/changes packaged up and sent to reviewers via email
Reviewers discuss, suggest changes
Support for thisin, e.g., Git: git format-patch

Used by many open-source projects (Linux kernel, Git itself) - via
mailing lists

Email Pass-around Reviews

Easy to implement

Can reach more people
Easy to involve extra reviewers if needed

Does not disrupt reviewers' work
Can be difficult to track / follow the email conversation

F. Vesely CS 4500 October 25, 2019 18 [24

Tool-assisted Reviews

e Software to assist with various aspects of review process
® Checklist & Workflow management

® |ntegrations with VC systems,

® Reports and metrics (process improvement)

e Audit management

e Eg., Smartbear Collaborator

e Lighter: Github pull requests

Pair Programming - Instant Reviews

e Reviewing developer is deeply involved in the code

e Better consideration for issues and consequences arising from
different implementations

e Reviewer has more time and deeper insight

® But: reviewer cannot take a step back and review from a fresh &
unbiased position

Ego

Someone looking over your work

Probably some attachment to it

Criticisms: sometimes hard not to take personally

Acknowledge a criticism and move on
» Doesn’t imply that the author agrees with the content of the criticism

Author should not try to defend the work under review

Checklists

Common programming errors

Based on examples in literature or experience

Might be different for different implementation languages
Might include coding guidelines

F. Vesely CS 4500 October 25, 2019 22/24

Fault class Inspection check

Data faults

Control faults

Input/output faults

Interface faults

Storage management faults

Exception management faults

Are all program variables initialized before their values are used?

Have all constants been named?

Should the upper bound of arrays be equal to the size of the array or Size —1?
If character strings are used, is a delimiter explicitly assigned?

Is there any possibility of buffer overflow?

For each conditional statement, is the condition correct?

Is each loop certain to terminate?

Are compound statements correctly bracketed?

In case statements, are all possible cases accounted for?

If a break is required after each case in case statements, has it been included?

Are all input variables used?
Are all output variables assigned a value before they are output?
Can unexpected inputs cause corruption?

Do all function and method calls have the correct number of parameters?
Do formal and actual parameter types match?

Are the parameters in the right order?

If components access shared memory, do they have the same model of
the shared memory structure?

If a linked structure is modified, have all links been correctly reassigned?
If dynamic storage is used, has space been allocated correctly?
Is space explicitly de-allocated after it is no longer required?

Have all possible error conditions been taken into account?

Summary

Code reviews:

e Areviewer goes through code, looking for defects shortcomings
Can be informal, or formal with predefined deliverables
Integration with VCS, also standalone tools

Effective technique

Low requirements (informal)

