Labyrinth & Formats
CS 4500 Assignment B

Due Tuesday, September 24, midnight

Submission You must deliver your artifacts in a directory called B in your repository (master branch,
see note below):

1. For task 1, traversal.md — the specification document.

2. For task 2, an executable called B, together with a file called format only containing one of
these 3 strings json, xml, or sexp.

All auxiliary files must be put into a sub-directory called Other.

Note: When this assignment is released you will not have the details for your repository yet. These
will be provided shortly after releasing this assignment.

Task 1

Your company has hired a group of stellar programmers. Your manager has put you in charge
of writing a specification for the interface for a module, dubbed Labyrinth, which these stellar
programmers will implement in your favorite language and ship back real soon.

As the name suggests, the high-level purpose of the desired module is to provide the services of a
basic labyrinth. For our purposes a labyrinth is a connectivity specification for nodes in a simple
graph, and a simple graph contains at most one edge between any pair of nodes. The desired
software must support these operations:

1. the creation of a plain labyrinth with named nodes;
2. the addition of a colored token to a node;
3. the query whether some colored token can reach some named graph node.

Formulate your specification in a mix of English and technical terms appropriate for your chosen
language. For example, in Java you would use the term package and you might use types while a
Python programmer would speak of modules and use informal data definitions.



Write the specification using the Markdown format. When printed, it must fit on a single page.
Specify the precise language (name, version) in which you expect the product to be written in.

The goal of Task 1 is to get a glimpse of the tasks that team leaders perform in software companies.
This specification is quite small so that a single page should easily suffice to give precise instructions
to developers.

Task 2

In this task you’ll explore data exchange formats in your chosen language. We gave you a choice
of supporting JSON, XML, or s-expressions. We recommend using JSON, but we’ll give you the
flexibility to choose a different format.

Develop a program that reads a series of well-formed XML/JSON/s-exp values from standard input
(STDIN). Values are restricted to the following format:

1. strings
2. arrays, where the first element is a string
3. objects, where the object has a key “this” and whose value is a string

No other format of input should be accepted.

In addition to reading from STDIN, your program should accept two command line options: -up or
-down. Based on the argument, the program will sort the values in ascending (-up) or descending
(-down) order, according to the string designated string parts (i.e., the string itself, the first element
of an array, or the “this” component of an object.

Example Input

Here are example inputs:
1. JSON

["b", 1, 2, 3]
g
{"this" : "c",
"other" : 0}

2. XML

<?7xml version="1.0" encoding="UTF-8" 7>
<array>
<element>b</element>
<element>1</element>



<element>2</element>
<element>3</element>
</array>

<?xml version="1.0" encoding="UTF-8" 7>
<element>a</element>

<?xml version="1.0" encoding="UTF-8" 7>
<object>

<this>c</this>

<other>0</other>
</object>

3. S-expressions

("b" 1 2 3)
nan)

((this "c")
(other 0))

Example Output
If invoked with -up the program should output something like this for input in JSON.

llall
[Ilbll, 1’ 2’ 3]

{"this" : "c¢", "other" : 0}
Similarly for XML and s-expressions. The output should be in the same format as the input. Specify

which format your program is using (as json, xml, or sexp) in a text file called format supplied
with your executable.

The goal of Task 2 is to figure out:

1. how your language processes command line arguments,
2. whether it has a good library for reading and writing structured data formats, and
3. how to deploy programs that run on Linux in your chosen language. See sources like this one

for details.


http://www.learnlinux.org.za/courses/build/shell-scripting/ch01s04.html

	Task 1
	Task 2
	Example Input


